1,865 research outputs found

    Probing the pairing symmetry in the over-doped Fe-based superconductor Ba_0.35Rb_0.65Fe_2As_2 as a function of hydrostatic pressure

    Full text link
    We report muon spin rotation experiments on the magnetic penetration depth lambda and the temperature dependence of lambda^{-2} in the over-doped Fe-based high-temperature superconductor (Fe-HTS) Ba_{1-x}Rb_ xFe_2As_2 (x = 0.65) studied at ambient and under hydrostatic pressures up to p = 2.3 GPa. We find that in this system lambda^{-2}(T) is best described by d-wave scenario. This is in contrast to the case of the optimally doped x = 0.35 system which is known to be a nodeless s^{+-}-wave superconductor. This suggests that the doping induces the change of the pairing symmetry from s^{+-} to d-wave in Ba_{1-x}Rb_{x}Fe_{2}As_{2}. In addition, we find that the d-wave order parameter is robust against pressure, suggesting that d is the common and dominant pairing symmetry in over-doped Ba_{1-x}Rb_{x}Fe_{2}As_{2}. Application of pressure of p = 2.3 GPa causes a decrease of lambda(0) by less than 5 %, while at optimal doping x = 0.35 a significant decrease of lambda(0) was reported. The superconducting transition temperature T_c as well as the gap to T_c ratio 2Delta/k_BT_c show only a modest decrease with pressure. By combining the present data with those previously obtained for optimally doped system x = 0.35 and for the end member x = 1 we conclude that the SC gap symmetry as well as the pressure effects on the SC quantities strongly depend on the Rb doping level. These results are discussed in the light of the putative Lifshitz transition, i.e., a disappearance of the electron pockets in the Fermi surface of Ba_{1-x}Rb_{x}Fe_{2}As_{2} upon hole doping.Comment: Accepted for publication in Physical Review

    Evidence for strong lattice effects as revealed from huge unconventional oxygen isotope effects on the pseudogap temperature in La2−x_{2-x}Srx_{x}CuO4_{4}

    Full text link
    The oxygen isotope (16^{16}O/18^{18}O) effect (OIE) on the pseudogap (charge-stripe ordering) temperature T∗T^{\ast} is investigated for the cuprate superconductor La2−x_{2-x}Srx_{x}CuO4_{4} as a function of doping xx by means of x-ray absorption near edge structure (XANES) studies. A strong xx dependent and sign reversed OIE on T∗T^{\ast} is observed. The OIE exponent αT∗\alpha_{T^{\ast}} systematically decreases from αT∗=−0.6(1.3)\alpha_{T^{\ast}} = - 0.6(1.3) for x=0.15x = 0.15 to αT∗=−4.4(1.1)\alpha_{T^{\ast}} = - 4.4(1.1) for x=0.06x = 0.06, corresponding to increasing T∗T^{\ast} and decreasing superconducting transition temperature TcT_{c}. Both T∗(16O)T^{\ast}(^{16}{\rm O}) and T∗(18O)T^{\ast}(^{18}{\rm O}) exhibit a linear doping dependence with different slopes and critical end points (where T∗(16O)T^{\ast}(^{16}{\rm O}) and T∗(18O)T^{\ast}(^{18}{\rm O}) fall to zero) at xc(16O)=0.201(4)x_{c}(^{16}{\rm O}) = 0.201(4) and xc(18O)=0.182(3)x_{c}(^{18}{\rm O}) = 0.182(3), indicating a large positive OIE of xcx_{c} with an exponent of αxc=0.84(22)\alpha_{x_{c}} = 0.84(22). The remarkably large and strongly doping dependent OIE on T∗T^{\ast} signals a substantial involvement of the lattice in the formation of the pseudogap, consistent with a polaronic approach to cuprate superconductivity and the vibronic character of its ground state

    Low-temperature magnetic fluctuations in the Kondo insulator SmB6

    Full text link
    We present the results of a systematic investigation of the magnetic properties of the three-dimensional Kondo topological insulator SmB6 using magnetization and muon-spin relaxation/rotation (muSR) measurements. The muSR measurements exhibit magnetic field fluctuations in SmB6 below 15 K due to electronic moments present in the system. However, no evidence for magnetic ordering is found down to 19 mK. The observed magnetism in SmB6 is homogeneous in nature throughout the full volume of the sample. Bulk magnetization measurements on the same sample show consistent behavior. The agreement between muSR, magnetization, and NMR results strongly indicate the appearance of intrinsic bulk magnetic in-gap states associated with fluctuating magnetic fields in SmB6 at low temperature.Comment: 5 pages, 5 figure

    Superconductivity and magnetism in RbxFe2-ySe2: Impact of thermal treatment on mesoscopic phase separation

    Full text link
    An extended study of the superconducting and normal-state properties of various as-grown and post-annealed RbxFe2-ySe2 single crystals is presented. Magnetization experiments evidence that annealing of RbxFe2-ySe2 at 413 K, well below the onset of phase separation Tp=489 K, neither changes the magnetic nor the superconducting properties of the crystals. In addition, annealing at 563 K, well above Tp, suppresses the superconducting transition temperature Tc and leads to an increase of the antiferromagnetic susceptibility accompanied by the creation of ferromagnetic impurity phases, which are developing with annealing time. However, annealing at T=488K=Tp increases Tc up to 33.3 K, sharpens the superconducting transition, increases the lower critical field, and strengthens the screening efficiency of the applied magnetic field. Resistivity measurements of the as-grown and optimally annealed samples reveal an increase of the upper critical field along both crystallographic directions as well as its anisotropy. Muon spin rotation and scanning transmission electron microscopy experiments suggest the coexistence of two phases below Tp: a magnetic majority phase of Rb2Fe4Se5 and a non-magnetic minority phase of Rb0.5Fe2Se2. Both microscopic techniques indicate that annealing the specimens just at Tp does not affect the volume fraction of the two phases, although the magnetic field distribution in the samples changes substantially. This suggests that the microstructure of the sample, caused by mesoscopic phase separation, is modified by annealing just at Tp, leading to an improvement of the superconducting properties of RbxFe2-ySe2 and an enhancement of Tc.Comment: 13 pages, 12 figure

    Growth, Crystal Structure and Magnetic Characterization of Zn-Stabilized CePtIn4

    Full text link
    The growth and characterization of CePtIn4, stabilized by 10% Zn substitution for In, is reported. The new material is orthorhombic, space group Cmcm (No. 63), with lattice parameters a = 4.51751(4) {\AA}, b = 16.7570(2) {\AA}, and c = 7.36682(8) {\AA}, and the refined crystal composition has 10% of Zn substituted for In, i.e. the crystals are CePt(In3.6Zn0.1)4. Crystals were grown using a self-flux method: only growths containing Zn yielded CePtIn4 crystals, while Ce3Pt4In13 crystals formed when Zn was not present. Anisotropic temperature-dependent magnetic susceptibilities for single crystals show that Zn-stabilized CePtIn4 orders magnetically at ~1.9 K. High-temperature Curie-Weiss fits indicate an effective moment of ~2.30 muB/ Ce and a directionally averaged Weiss-temperature of approximately - 9 K. Specific heat data shows a peak consistent with the ordering temperature seen in the magnetic susceptibility data. Zn-stabilized CePtIn4 is metallic and displays no superconducting transition down to 0.14 K.Comment: 8 pages, 5 figures, 1 tabl

    Examining the surface phase diagram of IrTe2_2 with photoemission

    Full text link
    In the transition metal dichalcogenide IrTe2_2, low-temperature charge-ordered phase transitions involving Ir dimers lead to the occurrence of stripe phases of different periodicities, and nearly degenerate energies. Bulk-sensitive measurements have shown that, upon cooling, IrTe2_2 undergoes two such first-order transitions to (5×1×5)(5\times1\times5) and (8×1×8)(8\times1\times8) reconstructed phases at Tc1∼280T_{c_1}\sim 280~K and Tc2∼180T_{c_2}\sim 180~K, respectively. Here, using surface sensitive probes of the electronic structure of IrTe2_2, we reveal the first-order phase transition at Tc3=165T_{c_3}=165~K to the (6×1)(6\times1) stripes phase, previously proposed to be the surface ground state. This is achieved by combining x-ray photoemission spectroscopy and angle-resolved photoemission spectroscopy, which give access to the evolution of stripe domains and a particular surface state, the energy of which is dependent on the Ir dimer length. By performing measurements over a full thermal cycle, we also report the complete hysteresis of all these phases

    Uniaxial strain-induced phase transition in the 2D topological semimetal IrTe2

    Full text link
    Strain is ubiquitous in solid-state materials, but despite its fundamental importance and technological relevance, leveraging externally applied strain to gain control over material properties is still in its infancy. In particular, strain control over the diverse phase transitions and topological states in two-dimensional transition metal dichalcogenides remains an open challenge. Here, we exploit uniaxial strain to stabilize the long-debated structural ground state of the 2D topological semimetal IrTe2_{2}, which is hidden in unstrained samples. Combined angle-resolved photoemission spectroscopy and scanning tunneling microscopy data reveal the strain-stabilized phase has a 6 × 1 periodicity and undergoes a Lifshitz transition, granting unprecedented spectroscopic access to previously inaccessible type-II topological Dirac states that dominate the modified inter-layer hopping. Supported by density functional theory calculations, we show that strain induces an Ir to Te charge transfer resulting in strongly weakened inter-layer Te bonds and a reshaped energetic landscape favoring the 6×1 phase. Our results highlight the potential to exploit strain-engineered properties in layered materials, particularly in the context of tuning inter-layer behavior

    Anomalous Shubnikov-de Haas effect and observation of the Bloch-Gr\"uneisen temperature in the Dirac semimetal ZrTe5

    Full text link
    Appearance of quantum oscillations (QO) in both thermodynamic and transport properties of metals at low temperatures is the most striking experimental consequence of the existence of a Fermi surface (FS). The frequency of these oscillations and the temperature dependence of their amplitude provides essential information about the FS topology and fermionic quasiparticle properties. Here, we report the observation of an anomalous suppression of the QO amplitude seen in resistivity (Shubnikov de-Haas effect) at sub-kelvin temperatures in ZrTe5 samples with a single small FS sheet comprising less than 5% of the first Brillouin zone. By comparing these results with measurements of the magneto-acoustic QO and the recovery of the usual Lifshitz-Kosevich behavior of the Shubnikov de-Haas (SdH) effect in ZrTe5_5 samples with a multi-sheet FS, we show that the suppression of the SdH effect originates from a decoupling of the electron liquid from the lattice. On crossing the so-called Bloch-Gr\"uneisen temperature, TBG_BG, electron-phonon scattering becomes strongly suppressed and in the absence of Umklapp scattering the electronic liquid regains Galilean invariance. In addition, we show, using a combination of zero-field electrical conductivity and ultrasonic-absorption measurements, that entering this regime leads to an abrupt increase of electronic viscosity
    • …
    corecore