1,134 research outputs found

    Elastic theory of quantum Hall smectics: effects of disorder

    Full text link
    We study the effect of disorder on quantum Hall smectics within the framework of an elastic theory. Based on a renormalization group calculation, we derive detailed results for the degrees of translational and orientational order of the stripe pattern at zero temperature and carefully map out the disorder and length-scale regimes in which the system effectively exhibits smectic, nematic, or isotropic behavior. We show that disorder always leads to a finite density of free dislocations and estimate the scale on which they begin to appear.Comment: 4 pages latex with 1 EPS figur

    Parametric resonance of a two-dimensional electron gas under bichromatic irradiation

    Full text link
    In an ultrahigh mobility 2D electron gas, even a weak nonparabolicity of the electron dispersion, by violating Kohn's theorem, can have a drastic effect on dc magnetotransport under ac drive. We study theoretically the manifestation of this effect in the dc response to the combined action of two driving ac-fields (bichromatic irradiation). Compared to the case of monochromatic irradiation, which is currently intensively studied both experimentally and theoretically, the presence of a second microwave source provides additional insight into the properties of an ac-driven 2D electron gas. In particular, we find that nonparabolicity, being the simplest cause for a violation of Kohn's theorem, gives rise to new qualitative effects specific to bichromatic irradiation. Namely, when the frequencies ω1\omega_1 and ω2\omega_2 are well away from the cyclotron frequency, ωc\omega_c, our simple classical considerations demonstrate that the system becomes parametrically unstable with respect to fluctuations with frequency (ω1+ω2)/2(\omega_1+\omega_2)/2. As an additional effect of nonparabolicity, this parametric instability can manifest itself in the dc properties of the system. This happens when ω1\omega_1, ω2\omega_2 and ωc\omega_c are related as 3:1:2, respectively. Even for weak detuning between ω1\omega_1 and ω2\omega_2, the effect of the bichromatic irradiation on the dc response in the presence of nonparabolicity can differ dramatically from the monochromatic case. In particular, the equations of motion can acquire multistable solutions. As a result, the diagonal dc-conductivity can assume several stable negative values at the same magnetic field.Comment: 11 pages, 10 figure

    General Localization Lengths for Two Interacting Particles in a Disordered Chain

    Full text link
    The propagation of an interacting particle pair in a disordered chain is characterized by a set of localization lengths which we define. The localization lengths are computed by a new decimation algorithm and provide a more comprehensive picture of the two-particle propagation. We find that the interaction delocalizes predominantly the center-of-mass motion of the pair and use our approach to propose a consistent interpretation of the discrepancies between previous numerical results.Comment: 4 pages, 2 epsi figure

    Readout of Majorana qubits

    Get PDF
    Schemes for topological quantum computation with Majorana bound states rely heavily on the ability to projectively measure products of Majorana operators. Here, we employ Markovian quantum measurement theory, including the readout device, to analyze such measurements. Specifically, we focus on the readout of Majorana qubits via continuous charge sensing of a tunnel-coupled quantum dot by a quantum point contact. We show that projective measurements of Majorana products Pi(i) (gamma) over cap (i) can be implemented by continuous charge sensing under quite general circumstances. Essential requirements are that a combined local parity (pi) over cap, involving the quantum dot charge along with the Majorana product of interest, be conserved, and that the two eigenspaces of the combined parity (pi) over cap generate distinguishable measurement signals. We find that qubit readout may have to rely on measuring noise correlations of the quantum-point-contact current. The average current encodes the qubit readout only transiently for fine-tuned parameters or in the presence of relaxation processes. We also discuss the corresponding measurement and decoherence times and consider processes, such as residual Majorana hybridizations, which are detrimental to the measurement protocol. Finally, we emphasize that the underlying mechanism-which we term symmetry-protected readout-is quite general and has further implications for both Majorana and non-Majorana systems

    Discrete charging of a quantum dot strongly coupled to external leads

    Full text link
    We examine a quantum dot with NdotN_{\rm dot} levels which is strongly coupled to leads for varying number of channels NN in the leads. It is shown both analytically and numerically that for strong couplings between the dot and the leads, at least Ndot−NN_{\rm dot}-N bound states (akin to subradiant states in optics) remain on the dot. These bound states exhibit discrete charging and, for a significant range of charging energies, strong Coulomb blockade behavior as function of the chemical potential. The physics changes for large charging energy where the same (superradiant) state is repeatedly charged.Comment: 5 pages, 3 figures (accepted for publication in EPL

    Chaos and Interacting Electrons in Ballistic Quantum Dots

    Full text link
    We show that the classical dynamics of independent particles can determine the quantum properties of interacting electrons in the ballistic regime. This connection is established using diagrammatic perturbation theory and semiclassical finite-temperature Green functions. Specifically, the orbital magnetism is greatly enhanced over the Landau susceptibility by the combined effects of interactions and finite size. The presence of families of periodic orbits in regular systems makes their susceptibility parametrically larger than that of chaotic systems, a difference which emerges from correlation terms.Comment: 4 pages, revtex, includes 3 postscript fig

    Semiclassical Approach to Orbital Magnetism of Interacting Diffusive Quantum Systems

    Full text link
    We study interaction effects on the orbital magnetism of diffusive mesoscopic quantum systems. By combining many-body perturbation theory with semiclassical techniques, we show that the interaction contribution to the ensemble averaged quantum thermodynamic potential can be reduced to an essentially classical operator. We compute the magnetic response of disordered rings and dots for diffusive classical dynamics. Our semiclassical approach reproduces the results of previous diagrammatic quantum calculations.Comment: 8 pages, revtex, includes 1 postscript fi
    • …
    corecore