16 research outputs found

    Paleontology of leaf beetles

    Full text link
    `The rate of evolution in any large group is not uniform; there are periods of relatise stability, and periods of comparatively rapid change.' Cockerell and LeVeque, 1931 To Yenli Ych, my beloved wife, a most wonderful person! The fossil record of the Chrysomelidae can be tentatively traced back to the late Paleozoic to early Mesozoic Triassic. Mesozoic records at least 9 subfamilies, 19 genera, and 35 species, are represented by the Sagrinae, the exclusively Mesozoic Proto scelinae, Clytrinae, Cryptocephalinae, Eumolpinae, Chrysomelinae. Galerucinac, Alticinae, and Cassidinae. Cenozoic records at least 12 subfamilies- 63 % of the extant- 12! genera, and 325 species, include the same extant subfamilies as well as the Donaciinae, Zeugophorinae, Criocerinae, and Hispinae and can be frequently identified to genus, especially if preserved in amber. Quaternary records are often identified to extant species. tn total, at least t3! genera about 4 % of total extant, and 357 species < 1 % have been reported. At least, 24 genera <1 % of the extant seem to be extinct. Although reliable biological information associated with the fossil chrysomelids is very scarce, it seems that most of the modern host-plant associations were established, at least, in the late Mesozoic to early Cenozoic. As a whole, stasis seems to be the general rule of the chrysomelid fossil record. Together with other faunal elements, chrysomelids, especially donaciines, have been used as biogeographic and paleoclimatological indicators in the Holocene. I

    Integrated microfluidic platform for the electrochemical detection of breast cancer markers in patient serum samples

    No full text
    A microsystem integrating electrochemical detection for the simultaneous detection of protein markers of breast cancer is reported. The microfluidic platform was realized by high precision milling of polycarbonate sheets and features two well distinguishable sections: a detection zone incorporating the electrode arrays and the fluid storage part. The detection area is divided into separate microfluidic chambers addressing selected electrodes for the measurement of samples and calibrators. The fluidic storage part of the platform consists of five reservoirs to store the reagents and sample, which are interfaced by septa. These reservoirs have the appropriate volume to run a single assay per cartridge and are manually filled. The liquids from the reservoirs are actuated by applying a positive air pressure (i.e.via a programmable syringe pump) through the septa and are driven to the detection zone via two turning valves. The application of the realised platform in the individual and simultaneous electrochemical detection of proteic cancer markers with very low detection limits are demonstrated. The microsystem has also been validated using real patient serum samples and excellent correlation with ELISA results obtained

    Catalogue of Chilean Elateridae

    No full text

    Transcription factors and target genes of pre-TCR signaling

    No full text
    Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.Work in CL-R and JA laboratory has been supported by the Ramón y Cajal and I3 Researchers Programs (CL-R), research grants from the Spanish Government (SAF2009-08066, SAF2012-36535 to CL-R; and BFU2008-01070, SAF2011-24268 to JA), Fundació la Marató TV3 (080730, 122530 to CL-R and JA), the Marie Curie International Reintegration Program of the European Union (MCIRG516308 to CL-R), the Spanish Ministry of Health (ISCIII-RETIC RD06/0009-FEDER), and Generalitat de Catalunya (2009SGR601, 2014SGR1153). CL-R is a recipient of the ICREA Acadèmia Award (Generalitat de Catalunya)
    corecore