28 research outputs found

    Neuropharmacological Mechanisms Underlying the Neuroprotective Effects of Methylphenidate

    Get PDF
    Methylphenidate is a psychostimulant that inhibits the neuronal dopamine transporter. In addition, methylphenidate has the intriguing ability to provide neuroprotection from the neurotoxic effects of methamphetamine and perhaps also Parkinson’s disease; both of which may likely involve the abnormal accumulation of cytoplasmic dopamine inside dopaminergic neurons and the resulting formation of dopamine-associated reactive oxygen species. As delineated in this review, the neuroprotective effects of methylphenidate are due, at least in part, to its ability to attenuate or prevent this abnormal cytoplasmic dopamine accumulation through several possible neuropharmacological mechanisms. These may include 1) direct interactions between methylphenidate and the neuronal dopamine transporter which may attenuate or prevent the entry of methamphetamine into dopaminergic neurons and may also decrease the synthesis of cytoplasmic dopamine through a D2 receptor-mediated signal cascade process, and 2) indirect effects upon the functioning of the vesicular monoamine transporter-2 which may increase vesicular dopamine sequestration through both vesicle trafficking and the kinetic upregulation of the vesicular monoamine transporter-2 protein. Understanding these neuropharmacological mechanisms of methylphenidate neuroprotection may provide important insights into the physiologic regulation of dopaminergic systems as well as the pathophysiology of a variety of disorders involving abnormal dopamine disposition ranging from substance abuse to neurodegenerative diseases such as Parkinson’s disease

    Developing manufacturing control software: A survey and critique

    Full text link
    The complexity and diversity of manufacturing software and the need to adapt this software to the frequent changes in the production requirements necessitate the use of a systematic approach to developing this software. The software life-cycle model (Royce, 1970) that consists of specifying the requirements of a software system, designing, implementing, testing, and evolving this software can be followed when developing large portions of manufacturing software. However, the presence of hardware devices in these systems and the high costs of acquiring and operating hardware devices further complicate the manufacturing software development process and require that the functionality of this software be extended to incorporate simulation and prototyping.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45542/1/10696_2005_Article_BF01328739.pd

    Nanophononics: state of the art and perspectives

    Full text link

    The Psychological Science Accelerator’s COVID-19 rapid-response dataset

    Get PDF
    In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data

    The Psychological Science Accelerator’s COVID-19 rapid-response dataset

    Get PDF
    In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data
    corecore