45 research outputs found

    The core shift effect in the blazar 3C 454.3

    Full text link
    Opacity-driven shifts of the apparent VLBI core position with frequency (the "core shift" effect) probe physical conditions in the innermost parts of jets in active galactic nuclei. We present the first detailed investigation of this effect in the brightest gamma-ray blazar 3C454.3 using direct measurements from simultaneous 4.6-43 GHz VLBA observations, and a time lag analysis of 4.8-37 GHz lightcurves from the UMRAO, CrAO, and Metsahovi observations in 2007-2009. The results support the standard Konigl model of jet physics in the VLBI core region. The distance of the core from the jet origin r_c(nu), the core size W(nu), and the lightcurve time lag DT(nu) all depend on the observing frequency nu as r_c(nu)~W(nu)~ DT(nu)~nu^-1/k. The obtained range of k=0.6-0.8 is consistent with the synchrotron self-absorption being the dominating opacity mechanism in the jet. The similar frequency dependence of r_c(nu) and W(nu) suggests that the external pressure gradient does not dictate the jet geometry in the cm-band core region. Assuming equipartition, the magnetic field strength scales with distance r as B = 0.4(r/1pc)^-0.8 G. The total kinetic power of electron/positron jet is about 10^44 ergs/s.Comment: Accepted for publication in MNRAS; 10 pages, 6 figure

    Optical and Radio Variability of the Blazar S4 0954+658

    Full text link
    We present an optical-to-radio study of the BL Lac object S4 0954+658 observations during 1998-2023. The measurements were obtained with the SAO RAS Zeiss-1000 1-m and AS-500/2 0.5-m telescopes in 2003-2023, with the RATAN-600 radio telescope at 1.25 (0.96, 1.1), 2.3, 4.7 (3.7, 3.9), 8.2 (7.7), 11.2, 22.3 (21.7) GHz in 1998-2023, with the IAA RAS RT-32 Zelenchukskaya and Badary telescopes at 5.05 and 8.63 GHz in 2020--2023, and with the RT-22 single-dish telescope of CrAO RAS at 36.8 GHz in 2009-2023. In this period the blazar had been showing extremely high broadband activity with the variability amplitude of flux densities up to 70-100% both in the optical and radio domains. In the period of 2014-2023 the blazar had been showing the historically highest activity in the radio wavelengths, and we detected multiple radio flares of varying amplitude and duration. The large flares last on average from 0.3 to 1 year at 22-36.8 GHz and slightly longer at 5-11.2 GHz. The optical flares are shorter and last 7-50 days. In the most active epoch of 2018-2023 the characteristic time scale τ\tau of variation at 5-22 GHz is about 100 days and about 1000 days for the state with lower activity in 2009-2014. We found a general correlation between the optical, radio, and Îł\gamma-ray flux variations, which suggests that we observe the same photon population from different emission regions. We estimated linear size of this region as 0.5-2 pc for different epochs. A broadband two components radio spectrum of S4 0954+658 jet was modelled by using both electrons and protons as emitting particles. It is shown that the synchrotron radio waves in this AGN may be generated by relativistic protons.Comment: Published in Astrophysical Bulletin Vol.78, N4 (2023

    Digital receivers for low-frequency radio telescopes UTR-2, URAN, GURT

    Full text link
    This paper describes digital radio astronomical receivers used for decameter and meter wavelength observations. This paper describes digital radio astronomical receivers used for decameter and meter wavelength observations. Since 1998, digital receivers performing on-the-fly dynamic spectrum calculations or waveform data recording without data loss have been used at the UTR-2 radio telescope, the URAN VLBI system, and the GURT new generation radio telescope. Here we detail these receivers developed for operation in the strong interference environment that prevails in the decameter wavelength range. Data collected with these receivers allowed us to discover numerous radio astronomical objects and phenomena at low frequencies, a summary of which is also presented.Comment: 24 pages, 15 figure

    WEBT and XMM-Newton observations of 3C 454.3 during the post-outburst phase. Detection of the little and big blue bumps

    Get PDF
    The blazar 3C 454.3 underwent an unprecedented optical outburst in spring 2005. This was first followed by a mm and then by a cm radio outburst, which peaked in February 2006. We report on follow-up observations by the WEBT to study the multiwavelength emission in the post-outburst phase. XMM-Newton observations on July and December 2006 added information on the X-ray and UV fluxes. The source was in a faint state. The radio flux at the higher frequencies showed a fast decreasing trend, which represents the tail of the big radio outburst. It was followed by a quiescent state, common at all radio frequencies. In contrast, moderate activity characterized the NIR and optical light curves, with a progressive increase of the variability amplitude with increasing wavelength. We ascribe this redder-when-brighter behaviour to the presence of a "little blue bump" due to line emission from the broad line region, which is clearly visible in the source SED during faint states. Moreover, the data from the XMM-Newton OM reveal a rise of the SED in the UV, suggesting the existence of a "big blue bump" due to thermal emission from the accretion disc. The X-ray spectra are well fitted with a power-law model with photoelectric absorption, possibly larger than the Galactic one. However, the comparison with previous X-ray observations would imply that the amount of absorbing matter is variable. Alternatively, the intrinsic X-ray spectrum presents a curvature, which may depend on the X-ray brightness. In this case, two scenarios are possible.Comment: 9 pages, 7 figures, accepted for publication in A&

    The WEBT Campaign on the Blazar 3C279 in 2006

    Full text link
    The quasar 3C279 was the target of an extensive multiwavelength monitoring campaign from January through April 2006, including an optical-IR-radio monitoring campaign by the Whole Earth Blazar Telescope (WEBT) collaboration. In this paper we focus on the results of the WEBT campaign. The source exhibited substantial variability of optical flux and spectral shape, with a characteristic time scale of a few days. The variability patterns throughout the optical BVRI bands were very closely correlated with each other. In intriguing contrast to other (in particular, BL Lac type) blazars, we find a lag of shorter- behind longer-wavelength variability throughout the RVB ranges, with a time delay increasing with increasing frequency. Spectral hardening during flares appears delayed with respect to a rising optical flux. This, in combination with the very steep IR-optical continuum spectral index of ~ 1.5 - 2.0, may indicate a highly oblique magnetic field configuration near the base of the jet. An alternative explanation through a slow (time scale of several days) acceleration mechanism would require an unusually low magnetic field of < 0.2 G, about an order of magnitude lower than inferred from previous analyses of simultaneous SEDs of 3C279 and other FSRQs with similar properties.Comment: Accepted for publication in Ap

    The unprecedented optical outburst of the quasar 3C 454.3. The WEBT campaign of 2004-2005

    Get PDF
    The radio quasar 3C 454.3 underwent an exceptional optical outburst lasting more than 1 year and culminating in spring 2005. The maximum brightness detected was R = 12.0, which represents the most luminous quasar state thus far observed (M_B ~ -31.4). In order to follow the emission behaviour of the source in detail, a large multiwavelength campaign was organized by the Whole Earth Blazar Telescope (WEBT). Continuous optical, near-IR and radio monitoring was performed in several bands. ToO pointings by the Chandra and INTEGRAL satellites provided additional information at high energies in May 2005. The historical radio and optical light curves show different behaviours. Until about 2001.0 only moderate variability was present in the optical regime, while prominent and long-lasting radio outbursts were visible at the various radio frequencies, with higher-frequency variations preceding the lower-frequency ones. After that date, the optical activity increased and the radio flux is less variable. This suggests that the optical and radio emissions come from two separate and misaligned jet regions, with the inner optical one acquiring a smaller viewing angle during the 2004-2005 outburst. Moreover, the colour-index behaviour (generally redder-when-brighter) during the outburst suggests the presence of a luminous accretion disc. A huge mm outburst followed the optical one, peaking in June-July 2005. The high-frequency (37-43 GHz) radio flux started to increase in early 2005 and reached a maximum at the end of our observing period (end of September 2005). VLBA observations at 43 GHz during the summer confirm theComment: 7 pages, 4 figures, to be published in A&

    WEBT multiwavelength monitoring and XMM-Newton observations of BL Lacertae in 2007-2008. Unveiling different emission components

    Get PDF
    In 2007-2008 we carried out a new multiwavelength campaign of the Whole Earth Blazar Telescope (WEBT) on BL Lacertae, involving three pointings by the XMM-Newton satellite, to study its emission properties. The source was monitored in the optical-to-radio bands by 37 telescopes. The brightness level was relatively low. Some episodes of very fast variability were detected in the optical bands. The X-ray spectra are well fitted by a power law with photon index of about 2 and photoelectric absorption exceeding the Galactic value. However, when taking into account the presence of a molecular cloud on the line of sight, the data are best fitted by a double power law, implying a concave X-ray spectrum. The spectral energy distributions (SEDs) built with simultaneous radio-to-X-ray data at the epochs of the XMM-Newton observations suggest that the peak of the synchrotron emission lies in the near-IR band, and show a prominent UV excess, besides a slight soft-X-ray excess. A comparison with the SEDs corresponding to previous observations with X-ray satellites shows that the X-ray spectrum is extremely variable. We ascribe the UV excess to thermal emission from the accretion disc, and the other broad-band spectral features to the presence of two synchrotron components, with their related SSC emission. We fit the thermal emission with a black body law and the non-thermal components by means of a helical jet model. The fit indicates a disc temperature greater than 20000 K and a luminosity greater than 6 x 10^44 erg/s.Comment: 11 pages, 7 figures, accepted for publication in A&

    The radio delay of the exceptional 3C 454.3 outburst. Follow-up WEBT observations in 2005-2006

    Get PDF
    In spring 2005 the blazar 3C 454.3 was observed in an unprecedented bright state from the near-IR to the hard X-ray frequencies. A mm outburst peaked in June-July 2005, and it was followed by a flux increase at high radio frequencies. In this paper we report on multifrequency monitoring by the WEBT aimed at following the further evolution of the outburst in detail. In particular, we investigate the expected correlation and time delays between the optical and radio emissions in order to derive information on the variability mechanisms and jet structure. A comparison among the light curves at different frequencies is performed by means of visual inspection and discrete correlation function, and the results are interpreted with a simple model taking into account Doppler factor variations of geometric origin. The high-frequency radio light curves show a huge outburst starting during the dimming phase of the optical one and lasting more than 1 year. The first phase is characterized by a slow flux increase, while in early 2006 a major flare is observed. The lower-frequency radio light curves show a progressively delayed and fainter event, which disappears below 8 GHz. We suggest that the radio major peak is not physically connected with the spring 2005 optical one, but it is actually correlated with a minor optical flare observed in October-November 2005. This interpretation involves both an intrinsic and a geometric mechanism. The former is represented by disturbances travelling down the emitting jet, the latter being due to the curved-jet motion, with the consequent differential changes of viewing angles of the different emitting regions.Comment: 5 pages, 3 figures, to be published in A&A (Letters
    corecore