45 research outputs found
The core shift effect in the blazar 3C 454.3
Opacity-driven shifts of the apparent VLBI core position with frequency (the
"core shift" effect) probe physical conditions in the innermost parts of jets
in active galactic nuclei. We present the first detailed investigation of this
effect in the brightest gamma-ray blazar 3C454.3 using direct measurements from
simultaneous 4.6-43 GHz VLBA observations, and a time lag analysis of 4.8-37
GHz lightcurves from the UMRAO, CrAO, and Metsahovi observations in 2007-2009.
The results support the standard Konigl model of jet physics in the VLBI core
region. The distance of the core from the jet origin r_c(nu), the core size
W(nu), and the lightcurve time lag DT(nu) all depend on the observing frequency
nu as r_c(nu)~W(nu)~ DT(nu)~nu^-1/k. The obtained range of k=0.6-0.8 is
consistent with the synchrotron self-absorption being the dominating opacity
mechanism in the jet. The similar frequency dependence of r_c(nu) and W(nu)
suggests that the external pressure gradient does not dictate the jet geometry
in the cm-band core region. Assuming equipartition, the magnetic field strength
scales with distance r as B = 0.4(r/1pc)^-0.8 G. The total kinetic power of
electron/positron jet is about 10^44 ergs/s.Comment: Accepted for publication in MNRAS; 10 pages, 6 figure
Optical and Radio Variability of the Blazar S4 0954+658
We present an optical-to-radio study of the BL Lac object S4 0954+658
observations during 1998-2023. The measurements were obtained with the SAO RAS
Zeiss-1000 1-m and AS-500/2 0.5-m telescopes in 2003-2023, with the RATAN-600
radio telescope at 1.25 (0.96, 1.1), 2.3, 4.7 (3.7, 3.9), 8.2 (7.7), 11.2, 22.3
(21.7) GHz in 1998-2023, with the IAA RAS RT-32 Zelenchukskaya and Badary
telescopes at 5.05 and 8.63 GHz in 2020--2023, and with the RT-22 single-dish
telescope of CrAO RAS at 36.8 GHz in 2009-2023. In this period the blazar had
been showing extremely high broadband activity with the variability amplitude
of flux densities up to 70-100% both in the optical and radio domains. In the
period of 2014-2023 the blazar had been showing the historically highest
activity in the radio wavelengths, and we detected multiple radio flares of
varying amplitude and duration. The large flares last on average from 0.3 to 1
year at 22-36.8 GHz and slightly longer at 5-11.2 GHz. The optical flares are
shorter and last 7-50 days. In the most active epoch of 2018-2023 the
characteristic time scale of variation at 5-22 GHz is about 100 days and
about 1000 days for the state with lower activity in 2009-2014. We found a
general correlation between the optical, radio, and -ray flux
variations, which suggests that we observe the same photon population from
different emission regions. We estimated linear size of this region as 0.5-2 pc
for different epochs. A broadband two components radio spectrum of S4 0954+658
jet was modelled by using both electrons and protons as emitting particles. It
is shown that the synchrotron radio waves in this AGN may be generated by
relativistic protons.Comment: Published in Astrophysical Bulletin Vol.78, N4 (2023
Digital receivers for low-frequency radio telescopes UTR-2, URAN, GURT
This paper describes digital radio astronomical receivers used for decameter
and meter wavelength observations. This paper describes digital radio
astronomical receivers used for decameter and meter wavelength observations.
Since 1998, digital receivers performing on-the-fly dynamic spectrum
calculations or waveform data recording without data loss have been used at the
UTR-2 radio telescope, the URAN VLBI system, and the GURT new generation radio
telescope. Here we detail these receivers developed for operation in the strong
interference environment that prevails in the decameter wavelength range. Data
collected with these receivers allowed us to discover numerous radio
astronomical objects and phenomena at low frequencies, a summary of which is
also presented.Comment: 24 pages, 15 figure
WEBT and XMM-Newton observations of 3C 454.3 during the post-outburst phase. Detection of the little and big blue bumps
The blazar 3C 454.3 underwent an unprecedented optical outburst in spring
2005. This was first followed by a mm and then by a cm radio outburst, which
peaked in February 2006. We report on follow-up observations by the WEBT to
study the multiwavelength emission in the post-outburst phase. XMM-Newton
observations on July and December 2006 added information on the X-ray and UV
fluxes. The source was in a faint state. The radio flux at the higher
frequencies showed a fast decreasing trend, which represents the tail of the
big radio outburst. It was followed by a quiescent state, common at all radio
frequencies. In contrast, moderate activity characterized the NIR and optical
light curves, with a progressive increase of the variability amplitude with
increasing wavelength. We ascribe this redder-when-brighter behaviour to the
presence of a "little blue bump" due to line emission from the broad line
region, which is clearly visible in the source SED during faint states.
Moreover, the data from the XMM-Newton OM reveal a rise of the SED in the UV,
suggesting the existence of a "big blue bump" due to thermal emission from the
accretion disc. The X-ray spectra are well fitted with a power-law model with
photoelectric absorption, possibly larger than the Galactic one. However, the
comparison with previous X-ray observations would imply that the amount of
absorbing matter is variable. Alternatively, the intrinsic X-ray spectrum
presents a curvature, which may depend on the X-ray brightness. In this case,
two scenarios are possible.Comment: 9 pages, 7 figures, accepted for publication in A&
The WEBT Campaign on the Blazar 3C279 in 2006
The quasar 3C279 was the target of an extensive multiwavelength monitoring
campaign from January through April 2006, including an optical-IR-radio
monitoring campaign by the Whole Earth Blazar Telescope (WEBT) collaboration.
In this paper we focus on the results of the WEBT campaign. The source
exhibited substantial variability of optical flux and spectral shape, with a
characteristic time scale of a few days. The variability patterns throughout
the optical BVRI bands were very closely correlated with each other. In
intriguing contrast to other (in particular, BL Lac type) blazars, we find a
lag of shorter- behind longer-wavelength variability throughout the RVB ranges,
with a time delay increasing with increasing frequency. Spectral hardening
during flares appears delayed with respect to a rising optical flux. This, in
combination with the very steep IR-optical continuum spectral index of ~ 1.5 -
2.0, may indicate a highly oblique magnetic field configuration near the base
of the jet. An alternative explanation through a slow (time scale of several
days) acceleration mechanism would require an unusually low magnetic field of <
0.2 G, about an order of magnitude lower than inferred from previous analyses
of simultaneous SEDs of 3C279 and other FSRQs with similar properties.Comment: Accepted for publication in Ap
The unprecedented optical outburst of the quasar 3C 454.3. The WEBT campaign of 2004-2005
The radio quasar 3C 454.3 underwent an exceptional optical outburst lasting
more than 1 year and culminating in spring 2005. The maximum brightness
detected was R = 12.0, which represents the most luminous quasar state thus far
observed (M_B ~ -31.4). In order to follow the emission behaviour of the source
in detail, a large multiwavelength campaign was organized by the Whole Earth
Blazar Telescope (WEBT). Continuous optical, near-IR and radio monitoring was
performed in several bands. ToO pointings by the Chandra and INTEGRAL
satellites provided additional information at high energies in May 2005. The
historical radio and optical light curves show different behaviours. Until
about 2001.0 only moderate variability was present in the optical regime, while
prominent and long-lasting radio outbursts were visible at the various radio
frequencies, with higher-frequency variations preceding the lower-frequency
ones. After that date, the optical activity increased and the radio flux is
less variable. This suggests that the optical and radio emissions come from two
separate and misaligned jet regions, with the inner optical one acquiring a
smaller viewing angle during the 2004-2005 outburst. Moreover, the colour-index
behaviour (generally redder-when-brighter) during the outburst suggests the
presence of a luminous accretion disc. A huge mm outburst followed the optical
one, peaking in June-July 2005. The high-frequency (37-43 GHz) radio flux
started to increase in early 2005 and reached a maximum at the end of our
observing period (end of September 2005). VLBA observations at 43 GHz during
the summer confirm theComment: 7 pages, 4 figures, to be published in A&
WEBT multiwavelength monitoring and XMM-Newton observations of BL Lacertae in 2007-2008. Unveiling different emission components
In 2007-2008 we carried out a new multiwavelength campaign of the Whole Earth
Blazar Telescope (WEBT) on BL Lacertae, involving three pointings by the
XMM-Newton satellite, to study its emission properties. The source was
monitored in the optical-to-radio bands by 37 telescopes. The brightness level
was relatively low. Some episodes of very fast variability were detected in the
optical bands. The X-ray spectra are well fitted by a power law with photon
index of about 2 and photoelectric absorption exceeding the Galactic value.
However, when taking into account the presence of a molecular cloud on the line
of sight, the data are best fitted by a double power law, implying a concave
X-ray spectrum. The spectral energy distributions (SEDs) built with
simultaneous radio-to-X-ray data at the epochs of the XMM-Newton observations
suggest that the peak of the synchrotron emission lies in the near-IR band, and
show a prominent UV excess, besides a slight soft-X-ray excess. A comparison
with the SEDs corresponding to previous observations with X-ray satellites
shows that the X-ray spectrum is extremely variable. We ascribe the UV excess
to thermal emission from the accretion disc, and the other broad-band spectral
features to the presence of two synchrotron components, with their related SSC
emission. We fit the thermal emission with a black body law and the non-thermal
components by means of a helical jet model. The fit indicates a disc
temperature greater than 20000 K and a luminosity greater than 6 x 10^44 erg/s.Comment: 11 pages, 7 figures, accepted for publication in A&
The radio delay of the exceptional 3C 454.3 outburst. Follow-up WEBT observations in 2005-2006
In spring 2005 the blazar 3C 454.3 was observed in an unprecedented bright
state from the near-IR to the hard X-ray frequencies. A mm outburst peaked in
June-July 2005, and it was followed by a flux increase at high radio
frequencies. In this paper we report on multifrequency monitoring by the WEBT
aimed at following the further evolution of the outburst in detail. In
particular, we investigate the expected correlation and time delays between the
optical and radio emissions in order to derive information on the variability
mechanisms and jet structure. A comparison among the light curves at different
frequencies is performed by means of visual inspection and discrete correlation
function, and the results are interpreted with a simple model taking into
account Doppler factor variations of geometric origin. The high-frequency radio
light curves show a huge outburst starting during the dimming phase of the
optical one and lasting more than 1 year. The first phase is characterized by a
slow flux increase, while in early 2006 a major flare is observed. The
lower-frequency radio light curves show a progressively delayed and fainter
event, which disappears below 8 GHz. We suggest that the radio major peak is
not physically connected with the spring 2005 optical one, but it is actually
correlated with a minor optical flare observed in October-November 2005. This
interpretation involves both an intrinsic and a geometric mechanism. The former
is represented by disturbances travelling down the emitting jet, the latter
being due to the curved-jet motion, with the consequent differential changes of
viewing angles of the different emitting regions.Comment: 5 pages, 3 figures, to be published in A&A (Letters