66 research outputs found

    Grotta Romanelli (Southern Italy, Apulia). Legacies and issues in excavating a key site for the Pleistocene of the Mediterranean

    Get PDF
    Grotta Romanelli, located on the Adriatic coast of southern Apulia (Italy), is considered a key site for the Mediterranean Pleistocene for its archaeological and palaeontological contents. The site, discovered in 1874, was re-evaluated only in 1900, when P. E. Stasi realised that it contained the first evidence of the Palaeolithic in Italy. Starting in 1914, G. A. Blanc led a pioneering excavation campaign, for the first-time using scientific methods applied to systematic palaeontological and stratigraphical studies. Blanc proposed a stratigraphic framework for the cave. Different dating methods (C-14 and U/Th) were used to temporally constrain the deposits. The extensive studies of the cave and its contents were mostly published in journals with limited distribution and access, until the end of the 1970s, when the site became forgotten. In 2015, with the permission of the authorities, a new excavation campaign began, led by a team from Sapienza University of Rome in collaboration with IGAG CNR and other research institutions. The research team had to deal with the consequences of more than 40 years of inactivity in the field and the combined effect of erosion and legal, as well as illegal, excavations. In this paper, we provide a database of all the information published during the first 70 years of excavations and highlight the outstanding problems and contradictions between the chronological and geomorphological evidence, the features of the faunal assemblages and the limestone artefacts

    The Paganica Fault and surface coseismic ruptures caused by the 6 april 2009 earthquake (L’Aquila, central Italy)

    Get PDF
    On 6 April 2009, at 01:32 GMT, an Mw 6.3 seismic event hit the central Apennines, severely damaging the town of L’Aquila and dozens of neighboring villages and resulting in approximately 300 casualties (Istituto Nazionale di Geofisica e Vulcanologia, http://www.ingv.it; MedNet, http://mednet.rm.ingv.it/proce- dure/events/QRCMT/090406_013322/qrcmt.html). This earth- quake was the strongest in central Italy since the devastating 1915 Fucino event (Mw 7.0). The INGV national seismic net- work located the hypocenter 5 km southwest of L’Aquila, 8–9 km deep. Based on this information and on the seismotectonic framework of the region, earthquake geologists traveled to the field to identify possible surface faulting (Emergeo Working Group 2009a, 2009b). The most convincing evidence of pri- mary surface rupture is along the Paganica fault, the geometry of which is consistent with seismological, synthetic aperture radar (SAR) and GPS data. Investigation of other known nor- mal faults of the area, i.e., the Mt. Pettino, Mt. San Franco, and Mt. Stabiata normal faults suggested that these structures were not activated during the April 6 shock (Emergeo Working Group 2009a, 2009b). In this report, we first describe the seismotectonic frame- work of the area, and then we present the field information that supports the occurrence of surficial displacement on the Paganica fault.Published940-9503.2. Tettonica attivaJCR Journalope

    The Paganica Fault and surface coseismic ruptures caused by the 6 april 2009 earthquake (L’Aquila, central Italy)

    Get PDF
    On 6 April 2009, at 01:32 GMT, an Mw 6.3 seismic event hit the central Apennines, severely damaging the town of L’Aquila and dozens of neighboring villages and resulting in approximately 300 casualties (Istituto Nazionale di Geofisica e Vulcanologia, http://www.ingv.it; MedNet, http://mednet.rm.ingv.it/proce- dure/events/QRCMT/090406_013322/qrcmt.html). This earth- quake was the strongest in central Italy since the devastating 1915 Fucino event (Mw 7.0). The INGV national seismic net- work located the hypocenter 5 km southwest of L’Aquila, 8–9 km deep. Based on this information and on the seismotectonic framework of the region, earthquake geologists traveled to the field to identify possible surface faulting (Emergeo Working Group 2009a, 2009b). The most convincing evidence of pri- mary surface rupture is along the Paganica fault, the geometry of which is consistent with seismological, synthetic aperture radar (SAR) and GPS data. Investigation of other known nor- mal faults of the area, i.e., the Mt. Pettino, Mt. San Franco, and Mt. Stabiata normal faults suggested that these structures were not activated during the April 6 shock (Emergeo Working Group 2009a, 2009b). In this report, we first describe the seismotectonic frame- work of the area, and then we present the field information that supports the occurrence of surficial displacement on the Paganica fault

    Metastatic melanoma in an esophagus demonstrating Barrett esophagus with high grade dysplasia

    Get PDF
    BACKGROUND: Metastatic melanoma involving the esophagus is rare; the occurrence of metastatic melanoma in a background of Barrett esophagus is rarer still. We report a case of an 80 year-old male who presented to our institution for workup of Barrett esophagus with high-grade dysplasia and who proved to have metastatic melanoma occurring in the background of Barrett esophagus, the first report of this kind, to our knowledge, in the English literature. CASE PRESENTATION: An 80 year-old Caucasian male was diagnosed at an outside institution with Barrett’s esophagus with high grade dysplasia and presented to our institution for therapy. The patient underwent endoscopic mucosal resection using a band ligation technique of an area of nodularity within the Barrett esophagus. Microscopic examination demonstrated extensive Barrett esophagus with high-grade dysplasia as well as a second tumor which was morphologically different from the surrounding high-grade dysplasia and which was positive for S-100, HMB 45 and Melan-A on immunohistochemistry, consistent with melanoma. Further workup of the patient demonstrated multiple radiologic lesions consistent with metastases. Molecular studies demonstrated that the melanoma was positive for the 1799T>A (V600E) mutation in the BRAF gene. The overall features of the tumor were most consistent with metastatic melanoma occurring in a background of Barrett esophagus with high-grade dysplasia. CONCLUSION: This case demonstrates a unique intersection between a premalignant condition (Barrett esophagus with high grade dysplasia) and a separate malignancy (melanoma). This report also shows the utility of molecular testing to support the hypothesis of primary versus metastatic disease in melanoma

    Assessing methyl tertiary butyl ether residual contamination in groundwater using radon

    No full text
    About 15 years ago, a fuelling station in Roma (Italy) was dismissed. When underground tanks were removed, a subsoil NAPL (Non-Aqueous Phase Liquid) contamination came out, showing gasoline leakage from the reservoirs. Monitoring actions took place next and only recently radon dissolved in groundwater was measured for a year and used as tracer of NAPLs in view of its high solubility in these substances. The relative deficit of radon in polluted groundwater compared to radon in background “clean” water allowed us to detect areas where residual gasoline is still located. The source of pollution was identified in correspondence of former gasoline tanks, in agreement with direct measurements of dissolved NAPLs, mainly Methyl Tertiary Butyl Ether (MTBE), a resistant and water-soluble additive introduced in gasoline in place of lead. A short and transient plume of MTBE was occasionally recognized. We hypothesize that the rise of groundwater table enhances removal of MTBE, likely adsorbed onto soil minerals such as zeolites, thus increasing its concentration in water. MTBE levels are then progressively reduced by natural attenuation processes, with half-life of about 23 days. Estimates of MTBE saturation from radon-deficit equations were not reliable because the aquifer is not homogeneous in terms of 226Ra distribution, porosity and emanation power and no equilibrium is reached for radon partitioning between NAPL and water

    The geological model of Celano town area for seismic microzonation activities

    No full text
    In this paper are presented the results of integrated investigations aimed at building a reference geological model for the seismic microzonation of Celano municipality (Central Italy). The study area is located along the northern rim of the Fucino basin, which is an intermontane half-graben filled by thick Plio-Quaternary alluvial and lacustrine deposits and is surrounded by Meso-Cenozoic limestone and Neogene sandstone relieves, with mean elevation around 1500m a.s.l., that also represent the bedrock units of the basin itself. Evidences of recent tectonic activity within the Fucino basin have been pointed out by several paleoseismological studies recently performed to better frame the effects of the seismogenic structures responsible for the Ms 7.0, 1915 Avezzano earthquake and other historical and prehistoric seismic events occurred in the area. On the basis of integrated site and laboratory investigations, such as surface geological surveys, borehole logging, isotope geochemical analyses based on Th-230/U-234 dating method, geotechnical investigation and hydrogeological prospecting, the geological model of the area was built. The identification of such model was fundamental in view of correct planning and development of further investigations and analyses, mainly based on geophysical methods and seismic response modelling, carried out by other research teams cooperating within the Celano seismic microzonation project. (C) 2008 Elsevier Ltd. All rights reserved
    • …
    corecore