60 research outputs found

    On Electromechanical Coupling in Elastomers

    Get PDF
    Permittivity of electroactive elastomers alters during deformation. The influence of the permittivity alterations on the electrostriction of elastomers is studied in the present work. Particularly, acrylic elastomer VHB 4910 is considered. A polarization-electric field constitutive theory is introduced accounting for the influence of mechanical deformations. The theory is used to analyze a free electrostriction of a thin elastomer plate. The elastic stress in the plate is described by various constitutive models including neo-Hookean, Yeoh, Arruda-Boyce, and Ogden. Results show that the permittivity alterations during mechanical deformation practically do not affect the process of electrostriction

    Complexity of the Tensegrity Structure for Dynamic Energy and Force Distribution of Cytoskeleton during Cell Spreading

    Get PDF
    Cytoskeleton plays important roles in intracellular force equilibrium and extracellular force transmission from/to attaching substrate through focal adhesions (FAs). Numerical simulations of intracellular force distribution to describe dynamic cell behaviors are still limited. The tensegrity structure comprises tension-supporting cables and compression-supporting struts that represent the actin filament and microtubule respectively, and has many features consistent with living cells. To simulate the dynamics of intracellular force distribution and total stored energy during cell spreading, the present study employed different complexities of the tensegrity structures by using octahedron tensegrity (OT) and cuboctahedron tensegrity (COT). The spreading was simulated by assigning specific connection nodes for radial displacement and attachment to substrate to form FAs. The traction force on each FA was estimated by summarizing the force carried in sounding cytoskeletal elements. The OT structure consisted of 24 cables and 6 struts and had limitations soon after the beginning of spreading by declining energy stored in struts indicating the abolishment of compression in microtubules. The COT structure, double the amount of cables and struts than the OT structure, provided sufficient spreading area and expressed similar features with documented cell behaviors. The traction force pointed inward on peripheral FAs in the spread out COT structure. The complex structure in COT provided further investigation of various FA number during different spreading stages. Before the middle phase of spreading (half of maximum spreading area), cell attachment with 8 FAs obtained minimized cytoskeletal energy. The maximum number of 12 FAs in the COT structure was required to achieve further spreading. The stored energy in actin filaments increased as cells spread out, while the energy stored in microtubules increased at initial spreading, peaked in middle phase, and then declined as cells reached maximum spreading. The dynamic flows of energy in struts imply that microtubules contribute to structure stabilization

    A new benchmark dataset with production methodology for short text semantic similarity algorithms

    Get PDF
    This research presents a new benchmark dataset for evaluating Short Text Semantic Similarity (STSS) measurement algorithms and the methodology used for its creation. The power of the dataset is evaluated by using it to compare two established algorithms, STASIS and Latent Semantic Analysis. This dataset focuses on measures for use in Conversational Agents; other potential applications include email processing and data mining of social networks. Such applications involve integrating the STSS algorithm in a complex system, but STSS algorithms must be evaluated in their own right and compared with others for their effectiveness before systems integration. Semantic similarity is an artifact of human perception; therefore its evaluation is inherently empirical and requires benchmark datasets derived from human similarity ratings. The new dataset of 64 sentence pairs, STSS-131, has been designed to meet these requirements drawing on a range of resources from traditional grammar to cognitive neuroscience. The human ratings are obtained from a set of trials using new and improved experimental methods, with validated measures and statistics. The results illustrate the increased challenge and the potential longevity of the STSS-131 dataset as the Gold Standard for future STSS algorithm evaluation. Β© 2013 ACM 1550-4875/2013/12-ART17 15.00

    Fracture as a material sink

    No full text
    Abstract Cracks are created by massive breakage of molecular or atomic bonds. The latter, in its turn, leads to the highly localized loss of material, which is the reason why even closed cracks are visible by a naked eye. Thus, fracture can be interpreted as the local material sink. Mass conservation is violated locally in the area of material failure. We consider a theoretical formulation of the coupled mass and momenta balance equations for a description of fracture. Our focus is on brittle fracture and we propose a finite strain hyperelastic thermodynamic framework for the coupled mass-flow-elastic boundary value problem. The attractiveness of the proposed framework as compared to the traditional continuum damage theories is that no internal parameters (like damage variables, phase fields, etc.) are used while the regularization of the failure localization is provided by the physically sound law of mass balance

    On Irreversibility and Dissipation in Hyperelasticity With Softening

    No full text

    Nonlinear Elasticity for Modeling Fracture of Isotropic Brittle Solids

    No full text
    • …
    corecore