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Permittivity of electroactive elastomers alters during deformation.
The influence of the permittivity alterations on the electrostriction
of elastomers is studied in the present work. Particularly, acrylic
elastomer VHB 4910 is considered. A polarization–electric field
constitutive theory is introduced accounting for the influence of me-
chanical deformations. The theory is used to analyze a free electro-
striction of a thin elastomer plate. The elastic stress in the plate is
described by various constitutive models including neo-Hookean,
Yeoh, Arruda-Boyce, and Ogden. Results show that the permittivity
alterations during mechanical deformation practically do not affect
the process of electrostriction. [DOI: 10.1115/1.4006057]
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1 Introduction

Electrostriction is a property of dielectrics that causes them to
change their shape under the application of an electric field. Elec-
trostriction in hard materials is known and used in applications for
a long time [1–3]. Electrostriction in soft elastomers is a relatively
new topic which is attractive in view of the versatile potential
applications in sensors and actuators [4–11].

Various theories of the electromechanical coupling at large
strains were formulated [12–17]. Most recently, three papers
appeared [18–20] which summarized the developments of nonlin-
ear electroelasticity taking different paths for the derivation of
equations and using different notational schemes. It is noteworthy
that the latter works put a special emphasis on the addition of the
energy contribution of the electric field to the general expression
of the Helmholtz free energy in contrast to the more traditional
use of the Maxwell electric stress.

In the case where the electric permittivity of the medium is con-
stant, both approaches based on the extended energy functions and
Maxwell stresses may lead to the same results and the difference in
formulation is a matter of taste. However, in the case where the
electric permittivity of the medium is not constant and it depends
on strains, the difference between the energy and Maxwell stress
formulations becomes sound. Indeed, when the electric permittivity
depending on strains is a factor in the extended energy function,
then the stress tensor should depend on the derivatives of the elec-
tric permittivity with respect to strains. Such a dependence led
Zhao and Suo [21], for example, to a conclusion that elastomers
might exist which thicken rather than thin under an applied electric
field.

In the present work we study the electrostriction of acrylic elas-
tomer VHB 4910 by taking a conservative and simple path of cou-
pling the elastic and Maxwell stresses enhanced with the electric
permittivity of the medium depending on strains. Particularly, we
consider a linear dependence of the permittivity on the first invari-
ant of the Cauchy-Green tensor. This dependence is fitted to the
results of the experimental measurements by Wissler and Mazza

[22]. The calibrated model coupled with various constitutive elas-
tic theories, including neo-Hookean, Yeoh, Arruda-Boyce, and
Ogden, is used for analysis of a free electrostriction of a thin elas-
tomer plate. Results of the analysis show that the permittivity
alterations during mechanical deformation practically do not
affect the process of electrostriction.

The paper is organized as follows. The field equations are sum-
marized in Sec. 2 and the constitutive theories are considered in
Sec. 3. The electrostriction of the a thin elastomer plate is ana-
lyzed in Sec. 4 and the general conclusions are drawn in Sec. 5.

2 Field Equations

The electric field E and the electric displacement D obey the
following equations of electrostatics in the absence of volumetric
charges:

curl E ¼ 0; divD ¼ 0 (1)

where the differential operators are defined with respect to spatial
coordinates y.

These equations are accompanied by the conditions on inter-
face A:

ðE1 � E2Þ � n ¼ 0; ðD2 � D1Þ � n ¼ qA (2)

Here n designates a unit normal to the surface; E1;D1 and E2;D2

designate the electric field and electric displacement in half-
spaces separated by the surface; and qA is the surface charge.

The electric displacement and electric field are related as
follows:

D ¼ e0Eþ P (3)

where e0 ¼ 8:854� 10�12 ðF=mÞ is the permittivity of free space
and P is the polarization vector characterizing the material proper-
ties under the imposed electric field

P ¼ PðEÞ (4)

The simplest and widely used form of (4) in the case of isotropic
media is the linear constitutive model

P ¼ ve0E (5)

where v is the electric susceptibility of the medium.
Substituting (5) in (3) we get

D ¼ e0er E (6)

where er ¼ 1þ v is the dielectric constant.
Usually the dielectric constant is assumed to be an invariable

material parameter. However, in the case of large deformations of
elastomers this material parameter varies with strains. We post-
pone the description of the variation to the next section.

The electric field creates body forces R and couples M on mate-
rial particles. The expressions for the electric body forces and cou-
ples vary with various theoretical frameworks [16]. However, all
of them reduce to the same form in the case of electrostatics and
zero distributed body charge q ¼ 0,

R ¼ ðgradEÞP; M ¼ P� E (7)

We notice with account of (5) that the body couple equals zero:
M ¼ 0.

Following Maxwell’s idea for magnetism, it is convenient to
present the electric body force as a divergence of the Maxwell
“stress” tensor rM,

R ¼ ðgradEÞP ¼ divrM (8)

Such a representation is not unique and it can be specialized as

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received October 25, 2011; final
manuscript received January 23, 2012; accepted manuscript posted February 21,
2012; published online May 11, 2012. Assoc. Editor: Chad Landis.

Journal of Applied Mechanics JULY 2012, Vol. 79 / 044507-1Copyright VC 2012 by ASME

Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



rM ¼ E� ðe0Eþ PÞ � e0

2
ðE � EÞ1 (9)

or, accounting for (6),

rM ¼ e0erE� E� e0

2
ðE � EÞ1 (10)

Subjected to the electric field, elastomers undergo deformations
that can be effectively described by means of continuum mechan-
ics. In continuum mechanics the atomistic or molecular structure
of material is approximated by a continuously distributed set of
the so-called material points or particles. The continuum material
point is an abstraction that is used to designate a small (infinitesi-
mal) representative volume of real material including many atoms
and molecules. A material point that occupies position x in the
reference configuration moves to position yðxÞ in the current con-
figuration of the continuum. The deformation in the vicinity of the
material point can be completely described by the deformation
gradient tensor:

F ¼ @y=@x (11)

Using the deformation gradient it is possible to introduce a con-
venient deformation measure—the right Cauchy-Green tensor,
which is not affected by the rigid body motion

C ¼ FTF (12)

In the case of elastic continuum the true (Cauchy) stress is related
to strain (12) with the following constitutive equation:

r ¼ 2F
@w
@C

FT (13)

where wðCÞ is the strain energy per unit material volume in the
reference configuration.

The material equilibrium equations in the electric field take
form

div rþ R ¼ 0 (14)

Governing Eqs. (11)–(14) should be completed with boundary
conditions on tractions

rn ¼ �t (15)

or placements

y ¼ �y (16)

where n is the unit outward normal to the surface of the contin-
uum and barred quantities are prescribed.

Combining the elastic and Maxwell stresses it is possible to
introduce the symmetric total stress

~r ¼ rþ rM (17)

which obeys the equilibrium equation (14) without body forces

div ~r ¼ 0 (18)

3 Constitutive Theories

Proceeding with the formulation of the boundary value problem
of electromechanics of elastomers, we discuss constitutive theo-
ries in the present section.

In the case of isotropic elastomers, constitutive theories in
terms of invariants or principal stretches are possible. We start
with the description in terms of invariants where the constitutive
equations for the elastic stress can be written as follows:

r ¼ �p1þ 2ðw1 þ I1w2ÞB� 2w2B2 (19)

where

B ¼ FFT (20)

is the left Cauchy-Green tensor and p is the undefined Lagrange
multiplier enforcing the incompressibility condition

det F ¼ 1 (21)

Besides, we defined wa � @w=@Ia, where I1 and I2 are the princi-
pal invariants of Cauchy-Green tensors

I1 ¼ trC ¼ trB;

I2 ¼ fðtrCÞ2 � trðC2Þg=2 ¼ fðtrBÞ2 � trðB2Þg=2
(22)

It remains only to define the strain energy function (SEF) w. We
will consider four SEFs for the acrylic elastomer VHB 4910.

First is the neo-Hookean SEF

w ¼ c1ðI1 � 3Þ (23)

where the shear modulus is c1 ¼ 0:08 ðMPaÞ.
Second is the Yeoh SEF

w ¼ c1ðI1 � 3Þ þ c2ðI1 � 3Þ2 þ c3ðI1 � 3Þ3 (24)

where the constants are c1 ¼ 0:0827 ðMPaÞ; c2 ¼�7:47
�10�4 ðMPaÞ;c3 ¼ 5:86� 10�6 ðMPaÞ—see [23] for calibration.

Third is the Arruda-Boyce SEF

w ¼ a

�
1

2
ðI1 � 3Þ þ 1

20N
ðI2

1 � 9Þ þ 11

1050N2
ðI3

1 � 27Þ

þ 19

7000N3
ðI4

1 � 81Þ þ 519

673750N4
ðI5

1 � 243Þ
� (25)

where the constants are a ¼ 0:0686 ðMPaÞ; N ¼ 124:88—see
[23] for calibration.

Alternatively, we can use the material description in terms of
the principal stresses and stretches. In this case the constitutive
equations take form

r1 ¼ k1

@w
@k1

� p; r2 ¼ k2

@w
@k2

� p; r3 ¼ k3

@w
@k3

� p (26)

where the strain energy depends on principal stretches
wðk1; k2; k3Þ.

We will consider the fourth SEF in Ogden’s form in terms of
principal stretches

w ¼
X2

n¼1

ln

an
ðkan

1 þ kan

2 þ kan

3 � 3Þ (27)

where the constants are l1¼0:04356ðMPaÞ;l2¼0:000117ðMPaÞ;
a1¼1:445; a2¼4:248—see [24] for calibration.

Besides the constitutive theories for elastic stresses, we will
consider a constitutive theory for the dependence of polarization
on the electric field. Specifically, we assume that (5) and (6) hold,
yet the dielectric constant is a function of the invariants of the
Cauchy-Green tensors defined in (22):

er ¼ erðI1; I2Þ (28)

We further make the simplest assumption that the dielectric pa-
rameter depends linearly on the first invariant only

er ¼ b0 þ b1ðI1 � 3Þ (29)

Here the second term in parentheses provides the invariable value
for the dielectric parameter er ¼ b0 in the absence of deformation
I1 ¼ 3.
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To fit coefficients b0 and b1 we used the experimental results of
Wissler and Mazza [22] who measured er for various magnitudes
of the equal biaxial stretch, k ¼ k1 ¼ k2 ¼ k�1=2

3 , of a thin elasto-
mer plate. Figure 1 presents experimental points and analytical
curve defined by (29) for

b0 ¼ 4:7; b1 ¼ �0:1; �0:049; �0:02 (30)

We will use constitutive theories defined by (23)–(25), (27), (29),
and (30) in the example considered in the following section.

4 Plate Electrostriction

We consider now a typical example of electrostriction where
compliant electrodes cover the top and bottom of elastomer plates
(Fig. 2). When charged the plate gets thinner. We can describe the
process analytically.

We assume that all fields are homogeneous and; consequently,
field equations (1) and (18) are obeyed identically.

Boundary conditions can be written as follows:

e0ðE2 � er E1Þ � n ¼ qA (31)

ðE1 � E2Þ � n ¼ 0 (32)

ð~r1 � ~r2Þn ¼ 0 (33)

where E1;E2 and ~r1; ~r2 are electric fields and generalized stresses
inside and outside the plate accordingly.

We further present the deformation and electric fields in the form

F ¼ k�1=2ðe1 � e1 þ e2 � e2Þ þ ke3 � e3 (34)

E1 ¼ Ee3; E2 ¼ 0 (35)

where e1; e2; e3 are the Cartesian base vectors and the lateral
stretch equals the ratio of the plate thicknesses after and before
straining.

k ¼ L

L0

(36)

We remind that the material is incompressible, and; consequently,
with account of (36) we have

AL ¼ A0L0; A ¼ A0=k (37)

Substituting (35) and (37) in boundary conditions (31) and (32)
we get

E ¼ qA

e0er
¼ Q

e0erA
¼ Qk

e0erA0

(38)

Substituting (34) and (35) in (10), (19), and (17) we have

~r11 ¼ ~r22 ¼ �pþ 2ðw1 þ I1w2Þ k�1 � 2w2k
�2 � e0

2

Qk
e0erA0

� �2

(39)

~r33 ¼ �pþ 2ðw1 þ I1w2Þ k2 � 2w2k
4

þ ere
2
0

Qk
ere0A0

� �2

� e0

2

Qk
ere0A0

� �2

(40)

Assuming the stress-free deformation ~r11 ¼ ~r22 ¼ ~r33 ¼ 0 that
obeys (33) and subtracting (40) from (39) we get

2er

k2
fðw1 þ I1w2Þð k�1 � k2Þ � w2ðk�2 � k4Þg ¼ Q2

A2
0

(41)

This equation allows us to calculate the lateral stretch k and volt-
age U ¼ EL for the given charge Q. Such calculations are pre-
sented graphically in Figs. 3–5 for the material models defined by
Eqs. (23)–(25) accordingly.

In the case of the Ogden theory described in terms of the princi-
pal stresses and stretches we have modified (39) and (40) as
follows:

~r1 ¼ ~r2 ¼ �pþ k1

@w
@k1

� e0

2

Qk
e0erA0

� �2

(42)

~r3 ¼ �pþ k3

@w
@k3

þ ere
2
0

Qk
ere0A0

� �2

� e0

2

Qk
ere0A0

� �2

(43)

Assuming the stress-free deformation ~r1 ¼ ~r2 ¼ ~r3 ¼ 0 that
obeys (33) and subtracting (40) from (39) we get

2er

k2
k1

@w
@k1

� k3

@w
@k3

� �
¼ Q2

A2
0

(44)

Substituting (27) and (34) in (44) we have

2er

k2

X2

n¼1

lnðk�an=2 � kanÞ ¼ Q2

A2
0

(45)

Fig. 1 Experiment (stars) versus theory (solid line) for various
dielectric parameters

Fig. 2 Electroactive elastomer plate
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Fig. 3 Dimensionless charge �Q 5 Q=ðA0
ffiffiffiffiffi
c1
p Þ versus lateral stretch k and dimensionless

voltage �U 5 U e0=ðL0
ffiffiffiffiffi
c1
p Þ for neo-Hookean model: curves for b1 5� 0:1, b1 5 � 0:049,

b1 5 � 0:02, b1 5 0 coincide

Fig. 4 Dimensionless charge �Q 5 Q=ðA0
ffiffiffiffiffi
c1
p Þ versus lateral stretch k and dimensionless

voltage �U 5 U e0=ðL0
ffiffiffiffiffi
c1
p Þ for Yeoh model: curves for b1 5� 0:1, b1 5� 0:049, b1 5� 0:02,

b1 5 0 coincide

Fig. 5 Dimensionless charge �Q 5 Q=ðA0

ffiffiffi
a
p Þ versus lateral stretch k and dimensionless

voltage �U 5 U e0=ðL0

ffiffiffi
a
p
Þ for Arruda-Boyce model: curves b1 5� 0:1, b1 5� 0:049,

b1 5� 0:02, b1 5 0 coincide
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This formula is presented graphically in Fig. 6
Results show that the permittivity alterations of the dielectric

during mechanical deformation practically do not affect the pro-
cess of electrostriction.

5 Concluding Remarks

A theory of nonlinear electroelasticity has been considered,
which incorporated the experimentally calibrated dependence of
the material electric permittivity on mechanical strains. The
theory stemmed from the Maxwell stress concept combined with
the hyperelastic stress formulations. It is shown based on the
developed theory that the dependence of the material electric per-
mittivity on mechanical strains has a minor effect on the free elec-
trostriction of a thin elastomer plate.

It is noteworthy that the present study was limited by one mate-
rial and one specific loading case. Though both the material and
the loading case are of the central importance in applications, it
can occur that different materials and loadings will lead to the dif-
ferent conclusions. We hope that our results will encourage and
guide the experimentalists to examine a variety of materials and
loadings.
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