580 research outputs found

    Bistability and Hysteresis of Intersubband Absorption in Strongly Interacting Electrons on Liquid Helium

    Full text link
    We study nonlinear inter-subband microwave absorption of electrons bound to the liquid helium surface. Already for a comparatively low radiation intensity, resonant absorption due to transitions between the two lowest subbands is accompanied by electron overheating. The overheating results in a significant population of higher subbands. The Coulomb interaction between electrons causes a shift of the resonant frequency, which depends on the population of the excited states and thus on the electron temperature TeT_e. The latter is determined experimentally from the electron photoconductivity. The experimentally established relationship between the frequency shift and TeT_e is in reasonable agreement with the theory. The dependence of the shift on the radiation intensity introduces nonlinearity into the rate of the inter-subband absorption resulting in bistability and hysteresis of the resonant response. The hysteresis of the response explains the behavior in the regime of frequency modulation, which we observe for electrons on liquid 3^3He and which was previously seen for electrons on liquid 4^4He

    Simulation of observed climate changes in 1850–2014 with climate model INM-CM5

    Get PDF
    Climate changes observed in 1850–2014 are modeled and studied on the basis of seven historical runs with the climate model INM-CM5 under the scenario proposed for the Coupled Model Intercomparison Project Phase 6 (CMIP6). In all runs global mean surface temperature rises by 0.8&thinsp;K at the end of the experiment (2014) in agreement with the observations. Periods of fast warming in 1920–1940 and 1980–2000 as well as its slowdown in 1950–1975 and 2000–2014 are correctly reproduced by the ensemble mean. The notable change here with respect to the CMIP5 results is the correct reproduction of the slowdown in global warming in 2000–2014 that we attribute to a change in ocean heat uptake and a more accurate description of the total solar irradiance in the CMIP6 protocol. The model is able to reproduce the correct behavior of global mean temperature in 1980–2014 despite incorrect phases of the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation indices in the majority of experiments. The Arctic sea ice loss in recent decades is reasonably close to the observations in just one model run; the model underestimates Arctic sea ice loss by a factor of 2.5. The spatial pattern of the model mean surface temperature trend during the last 30 years looks close to the one for the ERA-Interim reanalysis. The model correctly estimates the magnitude of stratospheric cooling.</p

    Climate variations in the Northern Hemisphere based on the use of an atmosphere-ocean IPCC model

    Get PDF
    Forced and natural variability of modelled and observed Atlantic Ocean temperature and Atlantic Meridional Overturning Circulation (AMOC) is studied. In the observations and in a forced climate model run, we find increasing temperature at 1000m in the Atlantic (20N). SVD analysis shows that, for both model data and observations, a high index of North Atlantic Oscillation (NAO) corresponds to negative temperature anomaly at 1000m to the north of 55N, although geographical details of temperature anomaly distribution are different for the model and observations. Particular attention has been paid to the influence of the fresh water flux due to the present global warning on the slowing down of the AMOC. It is shown that fresh water flux change is only a secondary cause of reduced AMOC in global warming conditions, while heat flux change is probably the main reason. Finally, it is shown that internal model AMOC variability is positively correlated with the near-surface air temperature in Atlantic-European Arctic sector on a 10-year time scale

    Effects of kinked linear defects on planar flux line arrays

    Full text link
    In the hard core limit, interacting vortices in planar type II superconductors can be modeled as non-interacting one dimensional fermions propagating in imaginary time. We use this analogy to derive analytical expressions for the probability density and imaginary current of vortex lines interacting with an isolated bent line defect and to understand the pinning properties of such systems. When there is an abrupt change of the direction of the pinning defect, we find a sinusoidal modulation of the vortex density in directions both parallel and perpendicular to the defect.Comment: 13 figure

    Amplification of Fluctuations in Unstable Systems with Disorder

    Full text link
    We study the early-stage kinetics of thermodynamically unstable systems with quenched disorder. We show analytically that the growth of initial fluctuations is amplified by the presence of disorder. This is confirmed by numerical simulations of morphological phase separation (MPS) in thin liquid films and spinodal decomposition (SD) in binary mixtures. We also discuss the experimental implications of our results.Comment: 15 pages, 4 figure

    Magnetic resonance force microscopy of individual domain wall

    Full text link
    The sample preparation and micromagnetic simulations were supported by Russian Science Foundation (project # 16-12-10254)

    Electric field induced strong localization of electrons on solid hydrogen surface: possible applications to quantum computing

    Full text link
    Two-dimensional electron system on the liquid helium surface is one of the leading candidates for constructing large analog quantum computers (P.M. Platzman and M.I. Dykman, Science 284, 1967 (1999)). Similar electron systems on the surfaces of solid hydrogen or solid neon may have some important advantages with respect to electrons on liquid helium in quantum computing applications, such as larger state separation ΔE\Delta E, absence of propagating capillary waves (or ripplons), smaller vapor pressure, etc. As a result, it may operate at higher temperatures. Surface roughness is the main hurdle to overcome in building a realistic quantum computer using these states. Electric field induced strong localization of surface electrons is shown to be a convenient tool to characterize surface roughness.Comment: 4 pages, 3 figure

    An application of the Ryll-Nardzewski-Woyczyński theorem to a uniform weak law for tail series of weighted sums of random elements in Banach spaces

    Get PDF
    For a sequence of Banach space valued random elements {Vn,n≥1} (which are not necessarily independent) with the series ∑n=1 ∞Vn converging unconditionally in probability and an infinite array a={ani,i≥n,n≥1} of constants, conditions are given under which (i) for all n≥1, the sequence of weighted sums ∑i=n maniVi converges in probability to a random element Tn(a) as m→∞, and (ii) Tn(a)→P0 uniformly in a as n→∞ where a is in a suitably restricted class of infinite arrays. The key tool used in the proof is a theorem of Ryll-Nardzewski and Woyczyński (1975, Proc. Amer. Math. Soc. 53, 96-98). © 2000 Elsevier Science B.V
    corecore