779 research outputs found

    Inter-valley dark trion states with spin lifetimes of 150 ns in WSe2_2

    Full text link
    We demonstrate long trion spin lifetimes in a WSe2_2 monolayer of up to 150 ns at 5 K. Applying a transverse magnetic field in time-resolved Kerr-rotation measurements reveals a complex composition of the spin signal of up to four distinct components. The Kerr rotation signal can be well described by a model which includes inhomogeneous spin dephasing and by setting the trion spin lifetimes to the measured excitonic recombination times extracted from time-resolved reflectivity measurements. We observe a continuous shift of the Kerr resonance with the probe energy, which can be explained by an adsorbate-induced, inhomogeneous potential landscape of the WSe2_2 flake. A further indication of extrinsic effects on the spin dynamics is given by a change of both the trion spin lifetime and the distribution of g-factors over time. Finally, we detect a Kerr rotation signal from the trion's higher-energy triplet state when the lower-energy singlet state is optically pumped by circularly polarized light. We explain this by the formation of dark trion states, which are also responsible for the observed long trion spin lifetimes.Comment: 23 pages, 13 figure

    Analytical considerations for accurately capturing the relevant species contributing to vitamin D status in liquid chromatography-tandem mass spectrometry assays

    Get PDF
    This tutorial review focuses on analytical challenges encountered with the liquid chromatography-tandem mass spectrometry determination of 25-hydroxyvitamin D, which is currently still considered the metabolite that is most representative of vitamin D status. It describes how multiple binding states of circulating 25-hydroxyvitamin D (phase II metabolites, epimers, free/bioavailable/protein-bound species) can influence the accuracy of the analytical determination. It also summarizes important chemical species that can inadvertently contribute to vitamin D status and thus cause systematic errors. These interfering endogenous and exogenous compounds might be isomers of vitamin D, constitutional isomers or isobars and the article outlines techniques to eliminate or minimize these interferences, including chromatographic separations, ion mobility spectrometry, and high-resolution mass spectrometry.Peer Reviewe

    Geometrical Frustration: A Study of 4d Hard Spheres

    Full text link
    The smallest maximum kissing-number Voronoi polyhedron of 3d spheres is the icosahedron and the tetrahedron is the smallest volume that can show up in Delaunay tessalation. No periodic lattice is consistent with either and hence these dense packings are geometrically frustrated. Because icosahedra can be assembled from almost perfect tetrahedra, the terms "icosahedral" and "polytetrahedral" packing are often used interchangeably, which leaves the true origin of geometric frustration unclear. Here we report a computational study of freezing of 4d hard spheres, where the densest Voronoi cluster is compatible with the symmetry of the densest crystal, while polytetrahedral order is not. We observe that, under otherwise comparable conditions, crystal nucleation in 4d is less facile than in 3d. This suggest that it is the geometrical frustration of polytetrahedral structures that inhibits crystallization.Comment: 4 pages, 3 figures; revised interpretatio

    Phase-field crystal modelling of crystal nucleation, heteroepitaxy and patterning

    Full text link
    We apply a simple dynamical density functional theory, the phase-field-crystal (PFC) model, to describe homogeneous and heterogeneous crystal nucleation in 2d monodisperse colloidal systems and crystal nucleation in highly compressed Fe liquid. External periodic potentials are used to approximate inert crystalline substrates in addressing heterogeneous nucleation. In agreement with experiments in 2d colloids, the PFC model predicts that in 2d supersaturated liquids, crystalline freezing starts with homogeneous crystal nucleation without the occurrence of the hexatic phase. At extreme supersaturations crystal nucleation happens after the appearance of an amorphous precursor phase both in 2d and 3d. We demonstrate that contrary to expectations based on the classical nucleation theory, corners are not necessarily favourable places for crystal nucleation. Finally, we show that adding external potential terms to the free energy, the PFC theory can be used to model colloid patterning experiments.Comment: 21 pages, 16 figure

    Hard sphere crystallization gets rarer with increasing dimension

    Full text link
    We recently found that crystallization of monodisperse hard spheres from the bulk fluid faces a much higher free energy barrier in four than in three dimensions at equivalent supersaturation, due to the increased geometrical frustration between the simplex-based fluid order and the crystal [J.A. van Meel, D. Frenkel, and P. Charbonneau, Phys. Rev. E 79, 030201(R) (2009)]. Here, we analyze the microscopic contributions to the fluid-crystal interfacial free energy to understand how the barrier to crystallization changes with dimension. We find the barrier to grow with dimension and we identify the role of polydispersity in preventing crystal formation. The increased fluid stability allows us to study the jamming behavior in four, five, and six dimensions and compare our observations with two recent theories [C. Song, P. Wang, and H. A. Makse, Nature 453, 629 (2008); G. Parisi and F. Zamponi, Rev. Mod. Phys, in press (2009)].Comment: 15 pages, 5 figure

    Nanosecond spin lifetimes in single- and few-layer graphene-hBN heterostructures at room temperature

    Full text link
    We present a new fabrication method of graphene spin-valve devices which yields enhanced spin and charge transport properties by improving both the electrode-to-graphene and graphene-to-substrate interface. First, we prepare Co/MgO spin injection electrodes onto Si++^{++}/SiO2_2. Thereafter, we mechanically transfer a graphene-hBN heterostructure onto the prepatterned electrodes. We show that room temperature spin transport in single-, bi- and trilayer graphene devices exhibit nanosecond spin lifetimes with spin diffusion lengths reaching 10μ\mum combined with carrier mobilities exceeding 20,000 cm2^2/Vs.Comment: 15 pages, 5 figure

    Homogeneous nucleation of colloidal melts under the influence of shearing fields

    Full text link
    We study the effect of shear flow on homogeneous crystal nucleation, using Brownian Dynamics simulations in combination with an umbrella sampling like technique. The symmetry breaking due to shear results in anisotropic radial distribution functions. The homogeneous shear rate suppresses crystal nucleation and leads to an increase of the size of the critical nucleus. These observations can be described by a simple, phenomenological extension of classical nucleation theory. In addition, we find that nuclei have a preferential orientation with respect to the direction of shear. On average the longest dimension of a nucleus is along the vorticity direction, while the shortest dimension is preferably perpendicular to that and slightly tilted with respect to the gradient direction.Comment: 10 pages, 8 figures, Submitted to J. Phys.: Condens. Matte

    Static Friction between Elastic Solids due to Random Asperities

    Full text link
    Several workers have established that the Larkin domains for two three dimensional nonmetallic elastic solids in contact with each other at a disordered interface are enormously large. This implies that there should be negligible static friction per unit area in the macroscopic solid limit. The present work argues that the fluctuations in the heights of the random asperities at the interface that occur in the Greenwood-Williamson model can account for static friction.Comment: Contains some improvements in the treatment of the subjec

    Collective Behavior of Asperities in Dry Friction at Small Velocities

    Full text link
    We investigate a simple model of dry friction based on extremal dynamics of asperities. At small velocities, correlations develop between the asperities, whose range becomes infinite in the limit of infinitely slow driving, where the system is self-organized critical. This collective phenomenon leads to effective aging of the asperities and results in velocity dependence of the friction force in the form F1exp(1/v)F\sim 1- \exp(-1/v).Comment: 7 pages, 8 figures, revtex, submitted to Phys. Rev.

    Simulation of fluid-solid coexistence in finite volumes: A method to study the properties of wall-attached crystalline nuclei

    Full text link
    The Asakura-Oosawa model for colloid-polymer mixtures is studied by Monte Carlo simulations at densities inside the two-phase coexistence region of fluid and solid. Choosing a geometry where the system is confined between two flat walls, and a wall-colloid potential that leads to incomplete wetting of the crystal at the wall, conditions can be created where a single nanoscopic wall-attached crystalline cluster coexists with fluid in the remainder of the simulation box. Following related ideas that have been useful to study heterogeneous nucleation of liquid droplets at the vapor-liquid coexistence, we estimate the contact angles from observations of the crystalline clusters in thermal equilibrium. We find fair agreement with a prediction based on Young's equation, using estimates of interface and wall tension from the study of flat surfaces. It is shown that the pressure versus density curve of the finite system exhibits a loop, but the pressure maximum signifies the "droplet evaporation-condensation" transition and thus has nothing in common with a van der Waals-like loop. Preparing systems where the packing fraction is deep inside the two-phase coexistence region, the system spontaneously forms a "slab state", with two wall-attached crystalline domains separated by (flat) interfaces from liquid in full equilibrium with the crystal in between; analysis of such states allows a precise estimation of the bulk equilibrium properties at phase coexistence
    corecore