767 research outputs found
Stability of strained heteroepitaxial systems in (1+1) dimensions
We present a simple analytical model for the determination of the stable
phases of strained heteroepitaxial systems in (1+1) dimensions. In order for
this model to be consistent with a subsequent dynamic treatment, all
expressions are adjusted to an atomistic Lennard-Jones system. Good agreement
is obtained when the total energy is assumed to consist of two contributions:
the surface energy and the elastic energy. As a result, we determine the stable
phases as a function of the main ``control parameters'' (binding energies,
coverage and lattice mismatch). We find that there exists no set of parameters
leading to an array of islands as a stable configuration. We however show that
a slight modification of the model can lead to the formation of stable arrays
of islands.Comment: 11 pages, 14 figures, submitted to Physical Review
Free energy of cluster formation and a new scaling relation for the nucleation rate
Recent very large molecular dynamics simulations of homogeneous nucleation
with Lennard-Jones atoms [Diemand et al. J. Chem. Phys. {\bf
139}, 074309 (2013)] allow us to accurately determine the formation free energy
of clusters over a wide range of cluster sizes. This is now possible because
such large simulations allow for very precise measurements of the cluster size
distribution in the steady state nucleation regime. The peaks of the free
energy curves give critical cluster sizes, which agree well with independent
estimates based on the nucleation theorem. Using these results, we derive an
analytical formula and a new scaling relation for nucleation rates: is scaled by , where the supersaturation ratio is ,
is the dimensionless surface energy, and is a dimensionless
nucleation rate. This relation can be derived using the free energy of cluster
formation at equilibrium which corresponds to the surface energy required to
form the vapor-liquid interface. At low temperatures (below the triple point),
we find that the surface energy divided by that of the classical nucleation
theory does not depend on temperature, which leads to the scaling relation and
implies a constant, positive Tolman length equal to half of the mean
inter-particle separation in the liquid phase.Comment: 7 figure
Systematically extending classical nucleation theory
The foundation for any discussion of first-order phse transitions is
Classical Nucleation Theory(CNT). CNT, developed in the first half of the
twentieth century, is based on a number of heuristically plausible assumtptions
and the majority of theoretical work on nucleation is devoted to refining or
extending these ideas. Ideally, one would like to derive CNT from a more
fundamental description of nucleation so that its extension, development and
refinement could be developed systematically. In this paper, such a development
is described based on a previously established (Lutsko, JCP 136:034509, 2012 )
connection between Classical Nucleation Theory and fluctuating hydrodynamics.
Here, this connection is described without the need for artificial assumtions
such as spherical symmetry. The results are illustrated by application to CNT
with moving clusters (a long-standing problem in the literature) and the
constructrion of CNT for ellipsoidal clusters
Systematic Improvement of Classical Nucleation Theory
We reconsider the applicability of classical nucleation theory (CNT) to the
calculation of the free energy of solid cluster formation in a liquid and its
use to the evaluation of interface free energies from nucleation barriers.
Using two different freezing transitions (hard spheres and NaCl) as test cases,
we first observe that the interface-free-energy estimates based on CNT are
generally in error. As successive refinements of nucleation-barrier theory, we
consider corrections due to a non-sharp solid-liquid interface and to a
non-spherical cluster shape. Extensive calculations for the Ising model show
that corrections due to a non-sharp and thermally fluctuating interface account
for the barrier shape with excellent accuracy. The experimental solid
nucleation rates that are measured in colloids are better accounted for by
these non-CNT terms, whose effect appears to be crucial in the interpretation
of data and in the extraction of the interface tension from them.Comment: 20 pages (text + supplementary material
Geometrical Frustration: A Study of 4d Hard Spheres
The smallest maximum kissing-number Voronoi polyhedron of 3d spheres is the
icosahedron and the tetrahedron is the smallest volume that can show up in
Delaunay tessalation. No periodic lattice is consistent with either and hence
these dense packings are geometrically frustrated. Because icosahedra can be
assembled from almost perfect tetrahedra, the terms "icosahedral" and
"polytetrahedral" packing are often used interchangeably, which leaves the true
origin of geometric frustration unclear. Here we report a computational study
of freezing of 4d hard spheres, where the densest Voronoi cluster is compatible
with the symmetry of the densest crystal, while polytetrahedral order is not.
We observe that, under otherwise comparable conditions, crystal nucleation in
4d is less facile than in 3d. This suggest that it is the geometrical
frustration of polytetrahedral structures that inhibits crystallization.Comment: 4 pages, 3 figures; revised interpretatio
Hard sphere crystallization gets rarer with increasing dimension
We recently found that crystallization of monodisperse hard spheres from the
bulk fluid faces a much higher free energy barrier in four than in three
dimensions at equivalent supersaturation, due to the increased geometrical
frustration between the simplex-based fluid order and the crystal [J.A. van
Meel, D. Frenkel, and P. Charbonneau, Phys. Rev. E 79, 030201(R) (2009)]. Here,
we analyze the microscopic contributions to the fluid-crystal interfacial free
energy to understand how the barrier to crystallization changes with dimension.
We find the barrier to grow with dimension and we identify the role of
polydispersity in preventing crystal formation. The increased fluid stability
allows us to study the jamming behavior in four, five, and six dimensions and
compare our observations with two recent theories [C. Song, P. Wang, and H. A.
Makse, Nature 453, 629 (2008); G. Parisi and F. Zamponi, Rev. Mod. Phys, in
press (2009)].Comment: 15 pages, 5 figure
Master-equation approach to the study of phase-change processes in data storage media
We study the dynamics of crystallization in phase-change materials using a master-equation approach in which the state of the crystallizing material is described by a cluster size distribution function. A model is developed using the thermodynamics of the processes involved and representing the clusters of size two and greater as a continuum but clusters of size one (monomers) as a separate equation. We present some partial analytical results for the isothermal case and for large cluster sizes, but principally we use numerical simulations to investigate the model. We obtain results that are in good agreement with experimental data and the model appears to be useful for the fast simulation of reading and writing processes in phase-change optical and electrical memories
Orientation dependence of heterogeneous nucleation at the CuāPb solid-liquid interface
In this work, we examine the effect of surface structure on the heterogeneous nucleation of Pb crystals from the melt at a Cu substrate using molecular-dynamics (MD) simulation. In a previous work [Palafox-Hernandez et al., Acta Mater. 59, 3137 (2011)] studying the Cu/Pb solid-liquid interface with MD simulation, we observed that the structure of the Cu(111) and Cu(100) interfaces was significantly different at 625 K, just above the Pb melting temperature (618 K for the model). The Cu(100) interface exhibited significant surface alloying in the crystal plane in contact with the melt. In contrast, no surface alloying was seen at the Cu(111) interface; however, a prefreezing layer of crystalline Pb, 2-3 atomic planes thick and slightly compressed relative to bulk Pb crystal, was observed to form at the interface. We observe that at the Cu(111) interface the prefreezing layer is no longer present at 750 K, but surface alloying in the Cu(100) interface persists. In a series of undercooling MD simulations, heterogeneous nucleation of fcc Pb is observed at the Cu(111) interface within the simulation time (5 ns) at 592 Kāa 26 K undercooling. Nucleation and growth at Cu(111) proceeded layerwise with a nearly planar critical nucleus. Quantitative analysis yielded heterogeneous nucleation barriers that are more than two orders of magnitude smaller than the predicted homogeneous nucleation barriers from classical nucleation theory. Nucleation was considerably more difficult on the Cu(100) surface-alloyed substrate. An undercooling of approximately 170 K was necessary to observe nucleation at this interface within the simulation time. From qualitative observation, the critical nucleus showed a contact angle with the Cu(100) surface of over 90Ā°, indicating poor wetting of the Cu(100) surface by the nucleating phase, which according to classical heterogeneous nucleation theory provides an explanation of the large undercooling necessary to nucleate on the Cu(100) surface, relative to Cu(111), whose surface is more similar to the nucleating phase due to the presence of the prefreezing layer
- ā¦