654 research outputs found

    Stability of strained heteroepitaxial systems in (1+1) dimensions

    Full text link
    We present a simple analytical model for the determination of the stable phases of strained heteroepitaxial systems in (1+1) dimensions. In order for this model to be consistent with a subsequent dynamic treatment, all expressions are adjusted to an atomistic Lennard-Jones system. Good agreement is obtained when the total energy is assumed to consist of two contributions: the surface energy and the elastic energy. As a result, we determine the stable phases as a function of the main ``control parameters'' (binding energies, coverage and lattice mismatch). We find that there exists no set of parameters leading to an array of islands as a stable configuration. We however show that a slight modification of the model can lead to the formation of stable arrays of islands.Comment: 11 pages, 14 figures, submitted to Physical Review

    Free energy of cluster formation and a new scaling relation for the nucleation rate

    Get PDF
    Recent very large molecular dynamics simulations of homogeneous nucleation with (18)109(1-8) \cdot 10^9 Lennard-Jones atoms [Diemand et al. J. Chem. Phys. {\bf 139}, 074309 (2013)] allow us to accurately determine the formation free energy of clusters over a wide range of cluster sizes. This is now possible because such large simulations allow for very precise measurements of the cluster size distribution in the steady state nucleation regime. The peaks of the free energy curves give critical cluster sizes, which agree well with independent estimates based on the nucleation theorem. Using these results, we derive an analytical formula and a new scaling relation for nucleation rates: lnJ/η\ln J' / \eta is scaled by lnS/η\ln S / \eta, where the supersaturation ratio is SS, η\eta is the dimensionless surface energy, and JJ' is a dimensionless nucleation rate. This relation can be derived using the free energy of cluster formation at equilibrium which corresponds to the surface energy required to form the vapor-liquid interface. At low temperatures (below the triple point), we find that the surface energy divided by that of the classical nucleation theory does not depend on temperature, which leads to the scaling relation and implies a constant, positive Tolman length equal to half of the mean inter-particle separation in the liquid phase.Comment: 7 figure

    PP4: ECONOMIC IMPACT OF SMOKING IN GERMANY

    Get PDF

    Systematic Improvement of Classical Nucleation Theory

    Full text link
    We reconsider the applicability of classical nucleation theory (CNT) to the calculation of the free energy of solid cluster formation in a liquid and its use to the evaluation of interface free energies from nucleation barriers. Using two different freezing transitions (hard spheres and NaCl) as test cases, we first observe that the interface-free-energy estimates based on CNT are generally in error. As successive refinements of nucleation-barrier theory, we consider corrections due to a non-sharp solid-liquid interface and to a non-spherical cluster shape. Extensive calculations for the Ising model show that corrections due to a non-sharp and thermally fluctuating interface account for the barrier shape with excellent accuracy. The experimental solid nucleation rates that are measured in colloids are better accounted for by these non-CNT terms, whose effect appears to be crucial in the interpretation of data and in the extraction of the interface tension from them.Comment: 20 pages (text + supplementary material

    Geometrical Frustration: A Study of 4d Hard Spheres

    Full text link
    The smallest maximum kissing-number Voronoi polyhedron of 3d spheres is the icosahedron and the tetrahedron is the smallest volume that can show up in Delaunay tessalation. No periodic lattice is consistent with either and hence these dense packings are geometrically frustrated. Because icosahedra can be assembled from almost perfect tetrahedra, the terms "icosahedral" and "polytetrahedral" packing are often used interchangeably, which leaves the true origin of geometric frustration unclear. Here we report a computational study of freezing of 4d hard spheres, where the densest Voronoi cluster is compatible with the symmetry of the densest crystal, while polytetrahedral order is not. We observe that, under otherwise comparable conditions, crystal nucleation in 4d is less facile than in 3d. This suggest that it is the geometrical frustration of polytetrahedral structures that inhibits crystallization.Comment: 4 pages, 3 figures; revised interpretatio

    Hard sphere crystallization gets rarer with increasing dimension

    Full text link
    We recently found that crystallization of monodisperse hard spheres from the bulk fluid faces a much higher free energy barrier in four than in three dimensions at equivalent supersaturation, due to the increased geometrical frustration between the simplex-based fluid order and the crystal [J.A. van Meel, D. Frenkel, and P. Charbonneau, Phys. Rev. E 79, 030201(R) (2009)]. Here, we analyze the microscopic contributions to the fluid-crystal interfacial free energy to understand how the barrier to crystallization changes with dimension. We find the barrier to grow with dimension and we identify the role of polydispersity in preventing crystal formation. The increased fluid stability allows us to study the jamming behavior in four, five, and six dimensions and compare our observations with two recent theories [C. Song, P. Wang, and H. A. Makse, Nature 453, 629 (2008); G. Parisi and F. Zamponi, Rev. Mod. Phys, in press (2009)].Comment: 15 pages, 5 figure

    Nanosecond spin lifetimes in single- and few-layer graphene-hBN heterostructures at room temperature

    Full text link
    We present a new fabrication method of graphene spin-valve devices which yields enhanced spin and charge transport properties by improving both the electrode-to-graphene and graphene-to-substrate interface. First, we prepare Co/MgO spin injection electrodes onto Si++^{++}/SiO2_2. Thereafter, we mechanically transfer a graphene-hBN heterostructure onto the prepatterned electrodes. We show that room temperature spin transport in single-, bi- and trilayer graphene devices exhibit nanosecond spin lifetimes with spin diffusion lengths reaching 10μ\mum combined with carrier mobilities exceeding 20,000 cm2^2/Vs.Comment: 15 pages, 5 figure

    Quark model description of quasi-elastic pion knockout from the proton at JLAB

    Full text link
    The interference term between s- and t-pole contributions to the p(e,e' pi+)n cross section is evaluated on the basis of the constituent quark model. It is shown that the contribution of baryon s-poles can be modeled by a nonlocal extension of the Kroll-Rudermann contact term. This contribution is in a destructive interference with the pion t-pole that is essential to improve the description of recent JLab data at the invariant mass W=1.95 GeV. Some predictions are made for a new JLab measurement at higher values W=2.1-2.3 GeV and Q2 centered at 1.6 and 2.45 GeV2/c2.Comment: 15 pages, 4 figures, to be published in Phys. Lett.
    corecore