23 research outputs found

    A unified machine learning approach to time series forecasting applied to demand at emergency departments

    Get PDF
    There were 25.6 million attendances at Emergency Departments (EDs) in England in 2019 corresponding to an increase of 12 million attendances over the past ten years. The steadily rising demand at EDs creates a constant challenge to provide adequate quality of care while maintaining standards and productivity. Managing hospital demand effectively requires an adequate knowledge of the future rate of admission. Using 8 years of electronic admissions data from two major acute care hospitals in London, we develop a novel ensemble methodology that combines the outcomes of the best performing time series and machine learning approaches in order to make highly accurate forecasts of demand, 1, 3 and 7 days in the future. Both hospitals face an average daily demand of 208 and 106 attendances respectively and experience considerable volatility around this mean. However, our approach is able to predict attendances at these emergency departments one day in advance up to a mean absolute error of +/- 14 and +/- 10 patients corresponding to a mean absolute percentage error of 6.8% and 8.6% respectively. Our analysis compares machine learning algorithms to more traditional linear models. We find that linear models often outperform machine learning methods and that the quality of our predictions for any of the forecasting horizons of 1, 3 or 7 days are comparable as measured in MAE. In addition to comparing and combining state-of-the-art forecasting methods to predict hospital demand, we consider two different hyperparameter tuning methods, enabling a faster deployment of our models without compromising performance. We believe our framework can readily be used to forecast a wide range of policy relevant indicators

    Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in European countries: technical description update

    Get PDF
    Following the emergence of a novel coronavirus (SARS-CoV-2) and its spread outside of China, Europe has experienced large epidemics. In response, many European countries have implemented unprecedented non-pharmaceutical interventions including case isolation, the closure of schools and universities, banning of mass gatherings and/or public events, and most recently, wide-scale social distancing including local and national lockdowns. In this technical update, we extend a semi-mechanistic Bayesian hierarchical model that infers the impact of these interventions and estimates the number of infections over time. Our methods assume that changes in the reproductive number - a measure of transmission - are an immediate response to these interventions being implemented rather than broader gradual changes in behaviour. Our model estimates these changes by calculating backwards from temporal data on observed to estimate the number of infections and rate of transmission that occurred several weeks prior, allowing for a probabilistic time lag between infection and death. In this update we extend our original model [Flaxman, Mishra, Gandy et al 2020, Report #13, Imperial College London] to include (a) population saturation effects, (b) prior uncertainty on the infection fatality ratio, (c) a more balanced prior on intervention effects and (d) partial pooling of the lockdown intervention covariate. We also (e) included another 3 countries (Greece, the Netherlands and Portugal). The model code is available at https://github.com/ImperialCollegeLondon/covid19model/ We are now reporting the results of our updated model online at https://mrc-ide.github.io/covid19estimates/ We estimated parameters jointly for all M=14 countries in a single hierarchical model. Inference is performed in the probabilistic programming language Stan using an adaptive Hamiltonian Monte Carlo (HMC) sampler

    Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil

    Get PDF
    Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness

    Evidence of initial success for China exiting COVID-19 social distancing policy after achieving containment.

    Get PDF
    Background: The COVID-19 epidemic was declared a Global Pandemic by WHO on 11 March 2020. By 24 March 2020, over 440,000 cases and almost 20,000 deaths had been reported worldwide. In response to the fast-growing epidemic, which began in the Chinese city of Wuhan, Hubei, China imposed strict social distancing in Wuhan on 23 January 2020 followed closely by similar measures in other provinces. These interventions have impacted economic productivity in China, and the ability of the Chinese economy to resume without restarting the epidemic was not clear. Methods: Using daily reported cases from mainland China and Hong Kong SAR, we estimated transmissibility over time and compared it to daily within-city movement, as a proxy for economic activity. Results: Initially, within-city movement and transmission were very strongly correlated in the five mainland provinces most affected by the epidemic and Beijing. However, that correlation decreased rapidly after the initial sharp fall in transmissibility. In general, towards the end of the study period, the correlation was no longer apparent, despite substantial increases in within-city movement. A similar analysis for Hong Kong shows that intermediate levels of local activity were maintained while avoiding a large outbreak. At the very end of the study period, when China began to experience the re-introduction of a small number of cases from Europe and the United States, there is an apparent up-tick in transmission. Conclusions: Although these results do not preclude future substantial increases in incidence, they suggest that after very intense social distancing (which resulted in containment), China successfully exited its lockdown to some degree. Elsewhere, movement data are being used as proxies for economic activity to assess the impact of interventions. The results presented here illustrate how the eventual decorrelation between transmission and movement is likely a key feature of successful COVID-19 exit strategies

    Potential impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and middle-income countries: a modelling study

    Get PDF
    Background: COVID-19 has the potential to cause substantial disruptions to health services, due to cases overburdening the health system or response measures limiting usual programmatic activities. We aimed to quantify the extent to which disruptions to services for HIV, tuberculosis, and malaria in low-income and middle-income countries with high burdens of these diseases could lead to additional loss of life over the next 5 years. Methods: Assuming a basic reproduction number of 3·0, we constructed four scenarios for possible responses to the COVID-19 pandemic: no action, mitigation for 6 months, suppression for 2 months, or suppression for 1 year. We used established transmission models of HIV, tuberculosis, and malaria to estimate the additional impact on health that could be caused in selected settings, either due to COVID-19 interventions limiting activities, or due to the high demand on the health system due to the COVID-19 pandemic. Findings: In high-burden settings, deaths due to HIV, tuberculosis, and malaria over 5 years could increase by up to 10%, 20%, and 36%, respectively, compared with if there was no COVID-19 pandemic. The greatest impact on HIV was estimated to be from interruption to antiretroviral therapy, which could occur during a period of high health system demand. For tuberculosis, the greatest impact would be from reductions in timely diagnosis and treatment of new cases, which could result from any prolonged period of COVID-19 suppression interventions. The greatest impact on malaria burden could be as a result of interruption of planned net campaigns. These disruptions could lead to a loss of life-years over 5 years that is of the same order of magnitude as the direct impact from COVID-19 in places with a high burden of malaria and large HIV and tuberculosis epidemics. Interpretation: Maintaining the most critical prevention activities and health-care services for HIV, tuberculosis, and malaria could substantially reduce the overall impact of the COVID-19 pandemic. Funding: Bill & Melinda Gates Foundation, Wellcome Trust, UK Department for International Development, and Medical Research Council

    Database of epidemic trends and control measures during the first wave of COVID-19 in mainland China.

    Get PDF
    OBJECTIVES: In this data collation study, we aimed to provide a comprehensive database describing the epidemic trends and responses during the first wave of coronavirus disease 2019 (COVID-19) throughout the main provinces in China. METHODS: From mid-January to March 2020, we extracted publicly available data regarding the spread and control of COVID-19 from 31 provincial health authorities and major media outlets in mainland China. Based on these data, we conducted descriptive analyses of the epidemic in the six most-affected provinces. RESULTS: School closures, travel restrictions, community-level lockdown, and contact tracing were introduced concurrently around late January but subsequent epidemic trends differed among provinces. Compared with Hubei, the other five most-affected provinces reported a lower crude case fatality ratio and proportion of critical and severe hospitalised cases. From March 2020, as the local transmission of COVID-19 declined, switching the focus of measures to the testing and quarantine of inbound travellers may have helped to sustain the control of the epidemic. CONCLUSIONS: Aggregated indicators of case notifications and severity distributions are essential for monitoring an epidemic. A publicly available database containing these indicators and information regarding control measures is a useful resource for further research and policy planning in response to the COVID-19 epidemic

    The impact of the COVID-19 pandemic on patterns of attendance at emergency departments in two large London hospitals: an observational study

    Get PDF
    Abstract Background Hospitals in England have undergone considerable change to address the surge in demand imposed by the COVID-19 pandemic. The impact of this on emergency department (ED) attendances is unknown, especially for non-COVID-19 related emergencies. Methods This analysis is an observational study of ED attendances at the Imperial College Healthcare NHS Trust (ICHNT). We calibrated auto-regressive integrated moving average time-series models of ED attendances using historic (2015–2019) data. Forecasted trends were compared to present year ICHNT data for the period between March 12, 2020 (when England implemented the first COVID-19 public health measure) and May 31, 2020. We compared ICHTN trends with publicly available regional and national data. Lastly, we compared hospital admissions made via the ED and in-hospital mortality at ICHNT during the present year to the historic 5-year average. Results ED attendances at ICHNT decreased by 35% during the period after the first lockdown was imposed on March 12, 2020 and before May 31, 2020, reflecting broader trends seen for ED attendances across all England regions, which fell by approximately 50% for the same time frame. For ICHNT, the decrease in attendances was mainly amongst those aged < 65 years and those arriving by their own means (e.g. personal or public transport) and not correlated with any of the spatial dependencies analysed such as increasing distance from postcode of residence to the hospital. Emergency admissions of patients without COVID-19 after March 12, 2020 fell by 48%; we did not observe a significant change to the crude mortality risk in patients without COVID-19 (RR 1.13, 95%CI 0.94–1.37, p = 0.19). Conclusions Our study findings reflect broader trends seen across England and give an indication how emergency healthcare seeking has drastically changed. At ICHNT, we find that a larger proportion arrived by ambulance and that hospitalisation outcomes of patients without COVID-19 did not differ from previous years. The extent to which these findings relate to ED avoidance behaviours compared to having sought alternative emergency health services outside of hospital remains unknown. National analyses and strategies to streamline emergency services in England going forward are urgently needed
    corecore