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Abstract

Background: There were 25.6 million attendances at Emergency Departments (EDs) in England in 2019
corresponding to an increase of 12 million attendances over the past ten years. The steadily rising demand at EDs
creates a constant challenge to provide adequate quality of care while maintaining standards and productivity.
Managing hospital demand effectively requires an adequate knowledge of the future rate of admission. We develop a
novel predictive framework to understand the temporal dynamics of hospital demand.

Methods: We compare and combine state-of-the-art forecasting methods to predict hospital demand 1, 3 or 7 days
into the future. In particular, our analysis compares machine learning algorithms to more traditional linear models as
measured in a mean absolute error (MAE) and we consider two different hyperparameter tuning methods, enabling a
faster deployment of our models without compromising performance. We believe our framework can readily be used
to forecast a wide range of policy relevant indicators.

Results: We find that linear models often outperform machine learning methods and that the quality of our
predictions for any of the forecasting horizons of 1, 3 or 7 days are comparable as measured in MAE. Our approach is
able to predict attendances at these emergency departments one day in advance up to a mean absolute error of ±14
and ±10 patients corresponding to a mean absolute percentage error of 6.8% and 8.6% respectively.

Conclusions: Simple linear methods like generalized linear models are often better or at least as good as ensemble
learning methods like the gradient boosting or random forest algorithm. However, though sophisticated machine
learning methods are not necessarily better than linear models, they improve the diversity of model predictions so
that stacked predictions can be more robust than any single model including the best performing one.
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Background
In 2019 there were 25.6 million attendances at emergency
departments (EDs) in the UK, corresponding to 70,231
patients attending every day [1]. The National Health Ser-
vice (NHS) trusts across England are under very high
pressure to maintain current standards and quality of care
[2]. In fact, the rate of attendance has grown by 4.8% since
2018 and by 10.6% over the last 5 years meaning that it
is increasing at a rate faster than population growth thus
putting high pressure on our health care system. Fail-
ure to make provisions for surges in demand can lead to
overcrowding, which in turn has been linked to multi-
ple adverse patient outcomes such as unfavourable patient
satisfaction, poor quality of care and diseconomies of scale
[3]. In order to decrease overcrowding, the NHS intro-
duced a new operational standard in 2010, commonly-
known as the “four hour target”, requiring that at least
95% of patients attending EDs should either be discharged,
admitted or transferred within 4 hours of arrival. How-
ever, this target has not been met since 2014 and failure
rates have reached a new high in January 2020 with 18%
of patients at EDs waiting longer than four hours despite
the fact that the overall number of attendances was lower
in January 2020 than in January 2019. In fact 15.3% of
patients spentmore than 4 hours in EDs in 2019 compared
to 11.9% last year and 5.5% five years ago, making 2019
the year with the worst annual performance on record
[1]. A shortage of staff is not the predominant cause for
long waiting times and low quality of care [4], rather, it
is that the correct type of staffing is not matched with
patient demand. This inefficiency in staffing can have sub-
stantial impacts such as the 86,264 of elective surgeries
that had to be cancelled for non-clinical reasons on the
day the patient was due to arrive in 2019. These cancella-
tions leave NHS hospital trusts with lost costs of surgeons,
anaesthetists and nurses as well as surgical session time
and theatre capacity. Moreover, in the same year, the per-
centage of patients who had not been treated within 28
days of cancellation decreased from 9.8% in 2018 to 8.8%
in 2019, however, still failing one of the NHS’s improve-
ment objectives. In addition the NHS England advises
that a 85% bed occupancy rate is the maximum safe level
of occupancy and it advises that trusts should try and
keep bed occupancy below 92%. However, 126 out of 170
trusts recorded bed occupancy above 85%, 58 trusts rates
above 92% in the third quarter of 2019, eight trusts had
occupancy above 98% and one trust recorded 100% bed
occupancy (NHS SitRep).
Overall the NHS in England has spent around £130

billion in 2018/19 on the delivery of health services [5]. A
major fraction, 44.9% in the financial year 2016-2017 [6],
of this spending is due to the 1.2 million people employed
by NHS hospital and community health services. Between
February 2018 and 2019 the number of doctors alone rose

by 2.5% and by 10% during the past five years [7]. This
emphasises the fact that long waiting times may not sim-
ply result from a shortage of staff. Nonetheless, every year
high agency and staffing costs are required to cover for
staffing shortages.
Given the importance of health care optimisation, pro-

cedures to help the hospitals balance the right staffing
numbers deployed in the most effective way is paramount.
This not only has implications for patient outcomes but
for general efficiency within the NHS. This paper provides
a means to improve health care delivery through a predic-
tive understanding of the rates of admission and the dura-
tion of stay at EDs (collectively referred to as “demand”). In
particular we provide statistical techniques that can help
facilitate an operationally relevant prediction of demand
for use in day to day planning. We also contribute to a bet-
ter understanding of the reasons for demand and highlight
why this understanding is fundamental to the delivery of
high quality care.

Previous work
Despite its importance, methods for predicting rates of
admission and understanding underlying dynamics have
not been studied extensively in the literature. Existing
methods have been limited to the application of classical
time series forecasting methods. In an Australian study,
Boyle et al. [8] predict monthly, daily and four hourly
demand at 27 EDs in Queensland. Taking public holidays
into account as predictors, the authors used an autore-
gressive integrated moving average (ARIMA) model as
well as regression and exponential smoothing methods to
predict demand up to a mean absolute percentage error
(MAPE) of 11% for daily admissions. McCarthy et al. [9]
predicted hourly presentations to American emergency
departments while including several temporal, weather
and patient factors on the number of hourly arrivals in
order to characterise behaviour at EDs. Jones et al. [10]
used seasonal autoregressive integrated moving average
(SARIMA), time series regression, exponential smoothing
and artificial neural network models to forecast demand.
The authors had access to two years of data and made
predictions ranging from 1 to 30 days in advance for
three hospitals in the USA. The authors found seasonal
and weekly patterns to be most important for an accu-
rate prediction and obtained a Mean Absolute Predictive
Error (MAPE) of 9 − 13% depending on the facility.
Champion et al. [11] performed an analysis of monthly
demand at an emergency department in regional Vic-
toria. They applied exponential smoothing and Box-
Jenkins methods to five years worth of admissions data.
Hoot et al. [12] carried out a discrete event simulation in
order to obtain forecasts for 2, 4, 6 and 8 hours into the
future. The authors analysed waiting times, length of stay
and bed occupancy.
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Our contribution
We develop a novel, predictive framework to understand
the temporal dynamics of hospital demand and we apply
an exhaustive statistical analysis to daily presentations at
EDs at St Mary’s and Charing Cross Hospitals, evaluat-
ing a range of standard time series and machine learning
approaches and ultimately developing our own unique
approach. In contrast to existing studies, we do not only
focus on the application of time series algorithms in order
to characterise demand but develop a generic procedure
that allows us to compare and combine both time series
and machine learning algorithms in order to obtain an
informative, more appropriate and consistently accurate
approach to the prediction of demand. Our models have
the ability to be retrained regularly and efficiently and are
therefore a powerful tool for online platforms and near
real time prediction. Using novel data from electronic log-
ging systems from eight years of daily presentations to
EDs at St Mary’s and Charing Cross Hospitals in London,
we construct a model that predicts the number of daily
arrivals to both hospitals. Our analysis accounts for sea-
sonal fluctuations, daily observed weather data and spe-
cific, pre-planned events indicated by staff at both EDs
such as the yearly Notting Hill Carnival. Using our proce-
dure can help the hospitals with the provision of the right
staffing numbers and deploying resources in the most
effective way.

Data sources
The St Mary’s and Charing Cross Hospitals are part of
the Imperial College Healthcare NHS Trust, one of 228
NHS hospital trusts in England. St Mary’s Hospital is the
major acute care hospital for North West London hous-
ing a major trauma centre. Its ED has faced an average
demand of 208 patients (with a maximum of 289 and a
minimum of 99) every day since 2011. Charing Cross Hos-
pital includes the serious injuries centre for West London
as well as a hyper acute stroke unit. On average there have
been 106 (with a maximum of 177 and a minimum of 60)
daily attendances at the ED since 2011. For our analysis,
we had access to electronic data records of the number of
daily attendances at the EDs for both hospitals from 2011
to 2018 (see Fig. 1). In order to investigate the demand
dynamics, we also collected data on school [13] and bank
holidays [14], as well as on the weather and Google search
volume for the word “flu” [15, 16] (see the Appendix for
more details). Finally, experienced staff at the EDs of both
hospitals provided us with a list of specific known events
in the locality that cause surge in demand (e.g. the Not-
ting Hill carnival - an annual festival taking place in the
catchment area of the hospital).

Exploratory data analysis
A central aim of this paper is not only to predict hospital

demand accurately but also attempt to understand the fac-
tors driving hospital demand. Daily data is driven by a
complex web of exogenous variables, many of which are
related to seasonal patterns or trends. Both time series
depicted in Fig. 1 show a strong underlying trend. In
the case of Charing Cross Hospital this trend is clearly
upwards while it goes downwards first for St Mary’s Hos-
pital due to a change of the hospital’s infrastructure, see
Fig. 2. There is also clear seasonality, the monthly atten-
dance at St Mary’s Hospital shows a very clear monthly
periodic pattern with troughs in January, April and August
and a rise in attendance during the winter months (likely
due to increases in acute respiratory infections), see Fig. 3.
Figure 3 also shows indications that bank or school holi-
days have a strong influence on the number of ED admis-
sions together with the flu season. It also shows that the
flu seasons contribution to increased demand runs well
into spring. While the monthly attendance at Charing
Cross Hospital also shows some periodic behaviour, it is
not as strong, see Fig. 4. It is therefore useful to note
that dynamics differ even from geographically close hos-
pitals with overlapping catchments. Both series show clear
day-of-week patterns, characterised by a strong autocor-
relation with respect to their lagged values of order 7, see
Fig. 5. Mondays have the highest volume of attendances at
both hospitals while attendance reaches its minimum dur-
ing weekends. This finding validates and confirms other
studies on hospital demand [17, 18].

Methods
We focus on forecasting demand one, three, and seven
days into the future. These particular forecasting inter-
vals are relevant as they allow the hospitals to take action
by using short term measures such as the cancellation of
elective surgeries or the hiring of additional staff through
agencies.
We use two different kinds of algorithms for our predic-

tions: traditional time series and machine learning algo-
rithms [19]. A discrete time series is a sequence of data
points in chronological order divided into regular time
intervals. The fundamental assumption behind both algo-
rithms is that data points that are close to each other in
time show a similar behaviour and that there is a depen-
dency between data points at the same position of the
time interval, e.g. same time of the year or same day of
the week. Time series algorithms use both the chronol-
ogy of the events and the specified interval in order to
make inference and split the time series into different lin-
ear components such as seasonality, trend and a residual.
The residual, which is assumed to contain some correla-
tive structure, is usually modelled using an autoregressive
stochastic process or exponential decay where future val-
ues are predicted based on past values [19]. In contrast,
machine learning algorithms specify a broad function
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Fig. 1 Attendances at EDs per day for 2011 to 2019. The horizontal lines are the average demands

class (such as trees or smooth curves) with sufficient
capacity to learn complex functions. These algorithms
learn from data balancing function complexity with pre-
dictive accuracy. For both sets of algorithms we create a
model (design) matrix containing explanatory variables.
For the time series algorithms only lagged demand from
previous time points were used. For the machine learn-
ing algorithm lagged demand values were used alongside
other covariates (see Table 1). As predictors we have cho-
sen past values such as demand on the previous day, last
week and the average of the past week as well as indi-
cators for bank holidays and school holidays. Moreover,
we use data from some of the surrounding weather sta-
tions on precipitation, minimal and maximal temperature
as covariates. Finally, we use search engine query data as
a covariate, as it has proven to be a very efficient mea-
sure for the detection of influenza epidemics [20]. Table 1
shows a few rows of our model matrix.
Below, we summarise the time series and machine

learning algorithms that we have considered (for detailed
mathematical information we refer the reader to [21]:

Time series algorithms
1 ARIMA - AutoRegressive IntegratedMoving Average

[21] An ARIMA model consists of three parts: The
autoregressive component (AR) referring to the fact
that the indicator of interest is regressed on its own
previous values (i.e. current values of demand depend
on past values of demand), the integrated (I) part
representing one or several differencing steps to make
the time series stationary and the moving average
(MA) component indicating that the regression error
is a linear combination of past error terms.

2 ETS - Exponential smoothing methods [21] In
general exponential smoothing refers to forecasting
methods which also regress on lagged values of the
target variable. However, it uses exponentially
decreasing weights for past observations. The ETS
model we employ uses exponential smoothing for
error, trend and seasonality.

3 STLM - a seasonal decomposition of time series by
LOESS (STL)a seasonal decomposition of time series
by LOESS (STL) STLM is another type of
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Fig. 2 Time series decompositions of attendances at both EDs for 2011 to 2019. Left St Mary’s Hospital and right Charing Cross Hospital. The first row
of plots is the data, the second the trend, the third seasonality and the fourth random residuals

exponential smoothing model. The time series is
decomposed into its seasonal components using
LOESS (locally estimated scatterplot smoothing)
before exponential smoothing is used to model the
error and trend component of the time series. Finally
the series is re-seasonalized.

4 StructTS - Structural Time Series Model [21] A
StructTS model is formulated directly in terms of
unobserved components, such as trends, seasonality
and exogenous factors that have a natural
interpretation. The StructTS model forms a state
space which makes it similar to the ARIMA and ETS
models.

Machine learning algorithms
1 glmnet [22] is a penalised generalized linear model

with built-in variable selection. The glmnet model is
an extension of the generalised linear model in which
bias (penalty/weight decay/regulariser) is introduced
in the form of a mixture penalty consisting of the
parameter �1 and �2 norms. The magnitude of this
penalty is tuned to balance overfitting vs.

underfitting, with the goal of reducing variance by
introducing some bias.

2 ranger [23] is a fast implementation of random
forests [24]. Random forests are a bagged ensemble
of decision trees. Random forests use bootstrapped
random subsets of the covariates variables to build
decision trees based on these subsets. Random forests
prevent overfitting by averaging to reduce variance.

3 Gradient Boosting Machines (gbm) [25] are a
generalized boosted regression model. In contrast to
random forests which builds a collection of multiple
independent decision trees, the decision trees created
by gradient boosting machines depend additively on
each other. Each new tree is added to an ensemble by
improving the previous trees residual error (the
functional negative gradient). Hyperparameters are
tuned to balance over and under fitting.

4 k-nearest neighbours (k-NN) [26] is a classic
supervised learning algorithm based on the idea that
data points that are close to each other in the space
of covariates should have similar predictions. Hence,
to make a prediction at a given location in covariate
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Fig. 3Monthly attendance at St Mary’s Hospital, 2011-2018

space, an average of the labels of the k nearest
neighbours is taken. The disadvantage of this
algorithm is that it slows down quickly once the
volume of data points increases.

Stacked regression
All the above algorithms have strengths and weaknesses.
It is therefore challenging to choose a singlemodel for pre-
diction. We create a consensus model by adopting stacked
regression, a particularly effective ensemble approach.
The idea of stacked regression is to combine the diversity
and strengths of multiple algorithms into a single model
with a better overall ability to generalise. We choose a
linear stacking model subject to convex combination con-
straints [27]. Following [27, 28] we train a linear stacker on
cross validation predictions of the individual time series
and machine learning models. This procedure helps us
avoid selecting models that overfit to the data. Stack-
ing models is not only empirically motivated, but has a
strong theoretical backing and has been proven to per-
form asymptotically exactly as well (by some loss metric)
as the best possible choice for the given data set among the
family of weighted combinations of the estimators. Stack-
ing has also been showing to work in a variety of settings
[29].

Validation and evaluation
Developing an algorithm with the best possible forecast
accuracy is themain goal of this study. However, caremust
be taken to ensure that these forecasts are not simply over-
fitting to noise in the data but are accurate and can truly
forecast to unseen data. A key innovation of this paper is
the development of a novel general purpose time series
cross validation procedure to ensure that:

a all algorithms are evaluated fairly and equally,
b the same data is used in all algorithms, and
c forecast errors are completely blind to the held-out

data (i.e. exactly as if the model was being used in a
real forecasting setting).

Temporal or time series cross-validation [21] is a method
to split the data into testing and training sets in order to
account for temporal structure in the data. The main idea
is that each test set only consists of a forecasting win-
dow of one day which lies one, three or seven days in
the future while the corresponding training set consists
of a number of observations prior to the forecasting win-
dow. The origin can either be fixed so that the length of
the training window grows by one, three, or seven days
for each new test set or it can move forward so that the
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Fig. 4Monthly attendance at Charing Cross Hospital, 2011-2018

Fig. 5 Day of the week effect for ED attendances at both hospitals 2011-2019
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Table 1 Excerpt from the model matrix corresponding to St Mary’s Hospital. Explanatory covariates for the machine learning
algorithms are listed

Date 2014-04-10 2014-04-11 2014-04-12 2014-04-13 . . .

demand 198 183 172 185 . . .

month April April April April . . .

yesterday 218 198 183 172 . . .

same day last week 223 189 187 195 . . .

average of previous week 199.6 196 195.1 193 . . .

time −0.306 −0.305 −0.304 −0.303 . . .

bank holiday FALSE FALSE FALSE FALSE . . .

school holiday FALSE FALSE TRUE TRUE . . .

day of week Thursday Friday Saturday Sunday . . .

precipitation on previous day 0 0 0 0 . . .

max temperature on previous day 17.5 17.2 15.0 17.4 . . .

min temperature on previous day 12.0 11.8 10.8 11.3 . . .

flu hits on google on previous day 7.52 4.88 5.12 4.08 . . .

Notting Hill carnival FALSE FALSE FALSE FALSE . . .

Christmas FALSE FALSE FALSE FALSE . . .

training window size remains fixed. We employ the latter
method.
Using temporal cross-validation for time series algo-

rithms only requires splitting the data into a training
and test set. Adapting the data so that the last 730 days
(24 months) of data are held out for testing, 2140 days
(roughly six years) were available for training which cor-
responds to a ∼75%/25% split. We then applied temporal
cross validation to each day in the test set (see Fig. 6) using
a rolling window so that all training sets consist of the
same number of days.
Given the fairness and robustness of our cross valida-

tion scheme, we are confident that our results are robust

to data shift and not only valid for the data times we have
collected.

Validation of hyperparameters
In order to allow for a fair comparison of the machine
learning algorithms, the method for temporal cross-
validation has to be adapted as most machine learning
algorithms require tuning of their hyperparameters to bal-
ance over and under fitting. Therefore we also have to
split the training data into a training and a validation set
in order to choose the best set of hyperparameters which
minimizes the error on the validation set. All machine
learning algorithms listed above (see “Machine learning

Fig. 6 Splitting the data into training, (one day) validation and test set
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algorithms” section) were trained on 4 years worth of data
and their hyperparameters were compared on a validation
set consisting of 730 days. In our analysis we have used
two different approaches to split the training set and to
choose the hyperparameters. We will call these the batch
and the online method.

The batchmethod
In order to choose the set of hyperparameters which min-
imizes the error on the validation set, we consider five dif-
ferent approaches. We choose the set of hyperparameters
which minimize the error

1 on the previous day,
2 on the past n days,
3 over the whole validation period using an

exponential moving average,
4 averaged over the whole validation period, or
5 according to caret’s built in rules (see [30]).

For each of the five cases above, we choose the best set
of hyperparameters for each day of the test set and refitted
all models on a daily basis. Of course refitting every model
for each day of the test set is computationally expensive.
Therefore we develop an online method, described below.

The onlinemethod
In the batch method described above, all models are refit-
ted daily, which takes significant computational power to
run andmight not be feasible for a deployed version of our
methods in a hospital setting. Thus, we explore whether
keeping the parameters fixed for longer periods, which
yields significant savings in terms of computation, hurts
performance. We refit each model over several testing
periods of various sizes which are subsets of the test set of

length 730 days with a rolling origin, see Fig. 7. Our chosen
testing periods are 1 day, 7 days, 30 days, 60 days, 365 days
and 730 days long. That means that we validated the best
set of hyperparameters for each algorithm for every test-
ing period, and then rolled forwards. The final error rates
are the result of the overall error on all predictions on the
whole test set of length 730.

Results
We compare the mean absolute error (MAE) and mean
absolute percentage error (MAPE) rates for all time series
algorithms as well as for the batch and the online method
as outlined above (see “The batch method” and “The
online method” sections). Finally, we compare our results
with the stacked regression.

St Mary’s hospital
The MAE of the time series algorithms range from 14.46
to 17 as shown in Table 2, with an MAPE ranging from
6.9% to 8.3%. Hence, although the time series algorithms
are simpler and only based on the time series without
using any other predictors, such as weather, bank or
school holidays (see Table 1 for details on all predictors),
they already give relatively accurate results. In case of the
machine learning algorithms, independent of the type of
hyperparameter tuning we use, most of the results for the
batch methods range between an MAE of 14.3 to 15.2
and an MAPE of 6.8% − 7.4%, as shown in Table 3. Only
the k-nearest neighbour algorithm performsworse despite
different ways of tuning. Especially when using the online
method, see Table 4a, the linear models produce the best
results for St Mary’s hospital with an MAPE of 6.8% in the
case of daily retraining of the generalized linear model.

Fig. 7 Splitting the data set into training, validation, and test set in case of the online method
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Table 2 Error rates for all time series algorithms for St Mary’s and Charing Cross Hospital

St Mary’s Hospital: Charing Cross Hospital:

algorithm days MAE MAPE (in %) MAE MAPE (in %)

1 15.29 7.2 12.33 10.1

ARIMA 3 15.68 7.4 14.75 12.2

7 15.58 7.4 13.81 11.4

1 14.47 6.9 10.46 8.5

ETS 3 16.89 8.0 17.60 14.6

7 16.18 7.6 14.55 11.8

1 14.54 6.9 10.72 8.7

StructTS 3 17.35 8.2 17.86 14.8

7 16.54 7.8 14.72 12.0

1 14.51 6.9 10.59 8.6

STLM 3 16.67 7.9 16.83 13.9

7 16.00 7.6 14.28 11.6

Charing cross hospital
The results for Charing Cross Hospital are similar
although the error rates are slightly increased. As shown in
Table 2, most time series algorithms yieldMAE error rates
between 10.5% and 14.5% while the corresponding MAPE
error rates range from 8.5% to 12%. The best performance
reached using the batch method is also around 10.5%
although the overall performance is a little bit better, see
Table 5. In case of the online method, the MAPE error

rates are as low as 8.6% for gradient boosting machine,
the generalized linear model or a simple linear model
retrained on a daily basis, as shown in Table 4b.

Stacked regression
In order to make use of the strengths of all algorithms,
we applied a generalised linear model as well as a penal-
ized regression to create an effective ensemble approach,
see Fig. 6 for details. The best performance was achieved

Table 3 MAE rates for all types of hyperparameter tuning predicting hospital demand 1, 3 or 7 days in advance in case of the batch
method for St Mary’s hospital

Choosing the best set of hyperparameters based on:

algorithm days yesterday the past exponential the average over the caret

n days moving average whole training set

1 14.50 14.38 14.48 14.42 14.34

lm 3 14.80 14.96 14.86 14.95 14.80

7 15.11 15.17 15.22 15.33 15.13

1 15.97 14.49 15.08 14.46 14.30

gbm 3 15.38 14.63 14.86 14.67 14.53

7 15.43 14.79 14.93 14.78 14.86

1 14.49 14.34 14.38 14.35 14.48

glmnet 3 14.81 14.79 14.82 14.75 14.77

7 14.98 15.11 14.94 15.16 15.09

1 15.86 15.47 15.74 15.79 15.42

knn 3 16.13 15.78 15.92 16.02 15.57

7 16.70 16.05 16.45 16.52 15.89

1 14.62 14.46 14.54 14.79 14.45

rf 3 14.66 14.55 14.54 15.15 14.53

7 14.93 14.61 14.62 15.53 14.67
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Table 4 Results from the online method for both hospitals

algorithm period MAE MAPE (in%) algorithm period MAE MAPE (in %)

lm 1 14.27 6.7 lm 730 10.59 8.6

glmnet 1 14.31 6.8 lm 1 10.59 8.6

gbm 730 14.33 6.8 glmnet 1 10.60 8.6

lm 7 14.33 6.8 lm 7 10.62 8.6

lm 365 14.34 6.8 gbm 1 10.63 8.6

glmnet 7 14.37 6.8 glmnet 7 10.64 8.6

glmnet 365 14.38 6.8 glmnet 730 10.64 8.5

gbm 7 14.40 6.8 gbm 7 10.71 8.7

lm 60 14.47 6.8 gbm 730 10.78 8.7

glmnet 60 14.47 6.8 lm 365 10.80 8.7

glmnet 1 14.49 6.9 glmnet 365 10.82 8.7

lm 30 14.50 6.8 lm 30 10.84 8.8

glmnet 30 14.50 6.8 glmnet 30 10.84 8.8

gbm 30 14.52 6.9 lm 60 10.86 8.8

gbm 60 14.52 6.9 glmnet 60 10.87 8.8

gbm 365 14.53 6.9 rf 1 10.93 8.9

rf 1 14.55 6.9 gbm 365 10.96 8.9

glmnet 730 14.58 6.8 gbm 30 11.00 8.9

lm 730 14.60 6.9 rf 7 11.08 9.0

rf 7 14.66 6.9 gbm 60 11.15 9.0

rf 730 14.73 6.9 rf 60 11.21 9.1

rf 365 14.76 7.0 rf 30 11.21 9.1

rf 60 15.02 7.1 rf 365 11.49 9.2

rf 30 15.08 7.1 rf 730 11.51 9.0

knn 1 15.52 7.3 knn 7 12.55 10.1

knn 7 15.53 7.3 knn 1 12.60 10.1

knn 730 15.61 7.4 knn 30 12.75 10.2

knn 365 15.62 7.4 knn 60 12.78 10.2

knn 30 15.75 7.4 knn 730 12.81 10.1

knn 60 15.93 7.5 knn 365 12.81 10.1

(a) St Mary’s Hospital (b) Charing Cross Hospital

using penalized regression with an MAE error rate of
14.51 for St Mary’s Hospital and 10.60 for Charing Cross
Hospital.

Interpretation of results
In our analysis we consider a variety of predictors ranging
from past values of ED attendance, to the weather fore-
cast and to school and bank holidays. The question left
to answer is therefore which of the predictors are actually
important for making accurate predictions? Could some
of them actually be redundant?
Inmachine learning, variable importance can be defined

as the dependence between input and output variables
and computed by permuting the values of a given pre-

dictor and calculating error on a held out set. This mea-
sure has drawbacks in the case of multicollinearity, which
could suppress the importance of certain variables in
somemodels. As shown in Fig. 8, the most important vari-
able predicting demand is the average demand the week
before - except for glmnet - followed by specific days and
months. The importance of these variables varies consid-
erably between algorithms but largely is consistent with
one another. To our knowledge, this is the first attempt
to quantify the importance of variables in predicting
demand. We believe that these importance percentages
can be utilised as heuristics to help staff improve their
prediction of demand in the absence of statistical analysis.
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Table 5 MAE error rates for all types of hyperparameter tuning predicting hospital demand 1, 3 or 7 days in advance in case of the
batch method for Charing Cross hospital

Choosing the best set of hyperparameters based on:

algorithm days yesterday the past exponential the average over the caret

n days moving average whole training set

1 10.66 10.60 10.67 10.58 10.51

lm 3 10.75 10.72 10.84 10.69 10.69

7 10.78 10.90 10.83 10.87 10.77

1 12.50 10.68 11.12 10.68 10.89

gbm 3 12.49 10.58 10.92 10.50 10.78

7 12.11 10.73 11.03 10.57 10.72

1 10.72 10.51 10.59 10.51 10.51

glmnet 3 10.85 10.69 10.74 10.69 10.69

7 10.86 10.76 10.84 10.76 10.76

1 12.81 12.57 12.62 12.77 12.36

knn 3 12.85 12.58 12.78 12.87 12.51

7 12.65 12.45 12.41 12.47 12.33

1 11.09 10.84 11.04 11.55 10.89

rf 3 10.98 10.80 10.83 11.85 10.78

7 10.92 10.78 10.79 11.99 10.72

Discussion
The results of our analysis highlight that in our case a
penalised linear method performs equally well or better
when compared to more sophisticated machine learn-
ing methods such as the gradient boosting algorithm,
the random forest algorithm or the stacked regression.
However, each of these methods has desirable advantages
over the others. While a linear model is much easier to
apply in practice, machine learning algorithms can gener-
alize better out of sample. Combining both the machine
learning and linear modelling approaches improve the
diversity of model predictions so that stacked predic-
tions are more robust and accurate than any single model
including the best performing one. This has been for-
mally demonstrated [31] but is also intuitive - it follows
from a ‘wisdom of the crowd’ rule for ensemble learn-
ing. However, using a stacked regression comes with the
disadvantage that the valuable insight on the drivers of a
time series may get lost. Hence the mechanism presented
above can be understood as a road map to find the best
method for a particular problem weighing its accuracy,
simplicity and interpretability. If additional covariates are
collected for our problem at hand or the data is more
granular, e.g. hourly, this process needs to be reapplied.
The online method that we have created has the ability

to provide accurate results with a very quick turnaround
time: an average model only takes a couple of minutes to
train and forecast. Running it over longer periods of time

without retraining of the model is much faster and at the
same time not significantly worse than tuning the hyper-
parameters on a daily basis. These properties are highly
desirable from an operational standpoint. Our model is
easily deployed to perform near real time analysis to help
staff and health care planners adjust existing rotas or
prepare for excess demand, especially important when
health systems are stressed by acute health events such as
COVID-19 [32].

Conclusion
The framework, analysis and methodology proposed in
this paper are highly relevant from an operational view-
point. To the authors knowledge, the majority of EDs in
the UK do try to account for demand, but do so using ad
hoc heuristics. Our approach provides some scientifically
backed information to improve these heuristics, but more
importantly provides a framework that is quick and easy
to implement. Estimates of 1, 3 and 7 day demand fore-
casts can be created at any time and updated easily allow-
ing statistically backed estimates to be used to inform
hospital policy and practice. Our hope is this paper will
fill a knowledge gap and increase hospitals uptake in the
use of these methods. Given epidemics and disease out-
breaks that can strain health systems, our approach can
provide added precision to help EDs operate as efficiently
as possible. The challenge will then be for teams in hos-
pitals to implement more insight-driven ways of working,
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Fig. 8 Variable importance for the machine learning algorithms - lm, glmnet, gbm and rf

more flexible approaches to rostering staff and innovative
ways of communicating with their local com munities.
In an era of precision medicine, future work will

undoubtedly focus on granular data sets including indi-
vidual level patient data with diagnoses and testing infor-
mation. This will not only help to improve performance
of the predictions but also help to understand depen-
dencies between seasonality, events and reasons for ED
presentations.
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