316 research outputs found
Simultaneous epidemic development of scald and net blotch on single leaf layers of a spring barley crop
Background and objectives
Two pathogens growing on the same leaf compete for the same resources, i.e. space and plant nutrients. This may lead to density dependent disease development. The pathogens may also influence each other directly such that the influence of one on the other is more complex than a simple function of the area of the other pathogen. Different interaction types are, for example, competition, mutualism and exploitation. The importance of such interactions for epidemics of simultaneously occurring pathogens has received little attention. The objective of this study is to investigate the simultaneous epidemic development of Rhynchosporium secalis (causing scald) and Drechslera teres (causing net blotch) on spring barley under field conditions.
Materials and methods
The field trial was performed with artificial inoculation of R. secalis and D. teres on three spring barley varieties differing in their susceptibility towards the pathogens. The pathogens were inoculated in three combinations: only one was inoculated, they were inoculated together, the second pathogen was inoculated 26 days after the first. A non-inoculated treatment was included. The trial had three replications. Nine plants were harvested from each plot five times during the season. Leaves were dried and disease severity and senescence observed. Only leaves with < 50 % senescence were included in the analysis.
Whole-plant disease severity over time was calculated as average of disease severity on leaves weighted by leaf area. Disease development per leaf layer was evaluated by fitting an exponential model to severity data over time for each leaf layer per variety, treatment and replicate. Association between scald and net blotch severity on individual leaves was analysed using Kendall’s tau.
Results and discussion
Net blotch developed on all leaf layers and reached whole-plant disease severities up to 15%. Scald did not develop on upper leaf layers and whole-plant severity was less than 2%. Disease severity curves at whole-plant level showed no effect of inoculating the other pathogen. The analysis of the growth rate of each disease per leaf layer showed a significant effect of variety and leaf layer within variety but no effect of treatment. However, we observed significant negative associations between the diseases on individual leaves for several combinations of leaf layer and variety. These results show that the individual leaf approach can provide new information and underline the importance of considering interactions between pathogens in the field.
Acknowledgement
This work was funded by the DARCOF II project BAR-O
Vekselvirkning mellem plantesygdomme påvirker sygdomsudviklingen
Sygdomme i planter kan være forårsaget af mange forskellige mikroorganismer, og ofte vil der i en enkelt afgrøde og på én plante være flere arter tilstede samtidigt. På trods af denne erfaring har der været tradition for at forske i sygdomme enkeltvis, og betydningen på det totale sygdomsniveau af vekselvirkninger mellem de enkelte patogener er kun blevet studeret i begrænset omfang. Her beskrives vekselvirkningen mellem sygdommene bladplet og skoldplet på byg i markforsøg
Nonequilibrium stochastic processes: Time dependence of entropy flux and entropy production
Based on the Fokker-Planck and the entropy balance equations we have studied
the relaxation of a dissipative dynamical system driven by external
Ornstein-Uhlenbeck noise processes in absence and presence of nonequilibrium
constraint in terms of the thermodynamically inspired quantities like entropy
flux and entropy production. The interplay of nonequilibrium constraint,
dissipation and noise reveals some interesting extremal nature in the time
dependence of entropy flux and entropy production.Comment: RevTex, 17 pages, 9 figures. To appear in Phys. Rev.
Quantum Multibaker Maps: Extreme Quantum Regime
We introduce a family of models for quantum mechanical, one-dimensional
random walks, called quantum multibaker maps (QMB). These are Weyl
quantizations of the classical multibaker models previously considered by
Gaspard, Tasaki and others. Depending on the properties of the phases
parametrizing the quantization, we consider only two classes of the QMB maps:
uniform and random. Uniform QMB maps are characterized by phases which are the
same in every unit cell of the multibaker chain. Random QMB maps have phases
that vary randomly from unit cell to unit cell. The eigenstates in the former
case are extended while in the latter they are localized. In the uniform case
and for large , analytic solutions can be obtained for the time
dependent quantum states for periodic chains and for open chains with absorbing
boundary conditions. Steady state solutions and the properties of the
relaxation to a steady state for a uniform QMB chain in contact with
``particle'' reservoirs can also be described analytically. The analytical
results are consistent with, and confirmed by, results obtained from numerical
methods. We report here results for the deep quantum regime (large ) of
the uniform QMB, as well as some results for the random QMB. We leave the
moderate and small results as well as further consideration of the
other versions of the QMB for further publications.Comment: 17 pages, referee's and editor's comments addresse
Metal enrichment processes
There are many processes that can transport gas from the galaxies to their
environment and enrich the environment in this way with metals. These metal
enrichment processes have a large influence on the evolution of both the
galaxies and their environment. Various processes can contribute to the gas
transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy
interactions and others. We review their observational evidence, corresponding
simulations, their efficiencies, and their time scales as far as they are known
to date. It seems that all processes can contribute to the enrichment. There is
not a single process that always dominates the enrichment, because the
efficiencies of the processes vary strongly with galaxy and environmental
properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 17; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Spatio-temporal dynamics of quantum-well excitons
We investigate the lateral transport of excitons in ZnSe quantum wells by
using time-resolved micro-photoluminescence enhanced by the introduction of a
solid immersion lens. The spatial and temporal resolutions are 200 nm and 5 ps,
respectively. Strong deviation from classical diffusion is observed up to 400
ps. This feature is attributed to the hot-exciton effects, consistent with
previous experiments under cw excitation. The coupled transport-relaxation
process of hot excitons is modelled by Monte Carlo simulation. We prove that
two basic assumptions typically accepted in photoluminescence investigations on
excitonic transport, namely (i) the classical diffusion model as well as (ii)
the equivalence between the temporal and spatial evolution of the exciton
population and of the measured photoluminescence, are not valid for
low-temperature experiments.Comment: 8 pages, 6 figure
Star Formation and Dynamics in the Galactic Centre
The centre of our Galaxy is one of the most studied and yet enigmatic places
in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre
(GC) is the ideal environment to study the extreme processes that take place in
the vicinity of a supermassive black hole (SMBH). Despite the hostile
environment, several tens of early-type stars populate the central parsec of
our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and
inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the
SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The
formation of such early-type stars has been a puzzle for a long time: molecular
clouds should be tidally disrupted by the SMBH before they can fragment into
stars. We review the main scenarios proposed to explain the formation and the
dynamical evolution of the early-type stars in the GC. In particular, we
discuss the most popular in situ scenarios (accretion disc fragmentation and
molecular cloud disruption) and migration scenarios (star cluster inspiral and
Hills mechanism). We focus on the most pressing challenges that must be faced
to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in
expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A.,
'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
Search for composite and exotic fermions at LEP 2
A search for unstable heavy fermions with the DELPHI detector at LEP is
reported. Sequential and non-canonical leptons, as well as excited leptons and
quarks, are considered. The data analysed correspond to an integrated
luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV
and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172
GeV and 161 GeV. The search for pair-produced new leptons establishes 95%
confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2,
depending on the channel. The search for singly produced excited leptons and
quarks establishes upper limits on the ratio of the coupling of the excited
fermio
Active Brownian Particles. From Individual to Collective Stochastic Dynamics
We review theoretical models of individual motility as well as collective
dynamics and pattern formation of active particles. We focus on simple models
of active dynamics with a particular emphasis on nonlinear and stochastic
dynamics of such self-propelled entities in the framework of statistical
mechanics. Examples of such active units in complex physico-chemical and
biological systems are chemically powered nano-rods, localized patterns in
reaction-diffusion system, motile cells or macroscopic animals. Based on the
description of individual motion of point-like active particles by stochastic
differential equations, we discuss different velocity-dependent friction
functions, the impact of various types of fluctuations and calculate
characteristic observables such as stationary velocity distributions or
diffusion coefficients. Finally, we consider not only the free and confined
individual active dynamics but also different types of interaction between
active particles. The resulting collective dynamical behavior of large
assemblies and aggregates of active units is discussed and an overview over
some recent results on spatiotemporal pattern formation in such systems is
given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
Search for lightest neutralino and stau pair production in light gravitino scenarios with stau NLSP
Promptly decaying lightest neutralinos and long-lived staus are searched for
in the context of light gravitino scenarios. It is assumed that the stau is the
next to lightest supersymmetric particle (NLSP) and that the lightest
neutralino is the next to NLSP (NNLSP). Data collected with the Delphi detector
at centre-of-mass energies from 161 to 183 \GeV are analysed. No evidence of
the production of these particles is found. Hence, lower mass limits for both
kinds of particles are set at 95% C.L.. The mass of gaugino-like neutralinos is
found to be greater than 71.5 GeV/c^2. In the search for long-lived stau,
masses less than 70.0 to 77.5 \GeVcc are excluded for gravitino masses from 10
to 150 \eVcc . Combining this search with the searches for stable heavy leptons
and Minimal Supersymmetric Standard Model staus a lower limit of 68.5 \GeVcc
may be set for the stau mas
- …