2,674 research outputs found

    Causality vs. Ward identity in disordered electron systems

    Full text link
    We address the problem of fulfilling consistency conditions in solutions for disordered noninteracting electrons. We prove that if we assume the existence of the diffusion pole in an electron-hole symmetric theory we cannot achieve a solution with a causal self-energy that would fully fit the Ward identity. Since the self-energy must be causal, we conclude that the Ward identity is partly violated in the diffusive transport regime of disordered electrons. We explain this violation in physical terms and discuss its consequences.Comment: 4 pages, REVTeX, 6 EPS figure

    Metal-Insulator Transition and Lattice Instability of Paramagnetic V2O3

    Full text link
    We determine the electronic structure and phase stability of paramagnetic V2_2O3_3 at the Mott-Hubbard metal-insulator phase transition, by employing a combination of an ab initio method for calculating band structures with dynamical mean-field theory. The structural transformation associated with the metal-insulator transition is found to occur upon a slight expansion of the lattice volume by 1.5\sim 1.5 %, in agreement with experiment. Our results show that the structural change precedes the metal-insulator transition, implying a complex interplay between electronic and lattice degrees of freedom at the transition. Electronic correlations and full charge self-consistency are found to be crucial for a correct description of the properties of V2_2O3_3.Comment: 5 pages, 4 figure

    A mean-field theory of Anderson localization

    Full text link
    Anderson model of noninteracting disordered electrons is studied in high spatial dimensions. We find that off-diagonal one- and two-particle propagators behave as gaussian random variables w.r.t. momentum summations. With this simplification and with the electron-hole symmetry we reduce the parquet equations for two-particle irreducible vertices to a single algebraic equation for a local vertex. We find a disorder-driven bifurcation point in this equation signalling vanishing of diffusion and onset of Anderson localization. There is no bifurcation in d=1,2d=1,2 where all states are localized. A natural order parameter for Anderson localization pops up in the construction.Comment: REVTeX4, 4 pages, 2 EPS figure

    Dissipative Currents in Superfluid 3He Weak Links

    Full text link
    We calculate the current-pressure relation for pinholes connecting two volumes of bulk superfluid 3He-B. The theory of multiple Andreev reflections, adapted from superconducting weak links, leads to a nonlinear dependence of the dc current on pressure bias. In arrays of pinholes one has to take into account oscillations of the texture at the Josephson frequency. The associated radiation of spin waves from the junction leads to an additional dissipative current at small biases, in quantitative agreement with measurements.Comment: 4 pages, 3 figures; updated to the published versio

    Mean-field theories for disordered electrons: Diffusion pole and Anderson localization

    Full text link
    We discuss conditions to be put on mean-field-like theories to be able to describe fundamental physical phenomena in disordered electron systems. In particular, we investigate options for a consistent mean-field theory of electron localization and for a reliable description of transport properties. We argue that a mean-field theory for the Anderson localization transition must be electron-hole symmetric and self-consistent at the two-particle (vertex) level. We show that such a theory with local equations can be derived from the asymptotic limit to high spatial dimensions. The weight of the diffusion pole, i. e., the number of diffusive states at the Fermi energy, in this mean-field theory decreases with the increasing disorder strength and vanishes in the localized phase. Consequences of the disclosed behavior for our understanding of vanishing of electron diffusion are discussed.Comment: REVTeX4, 11 pages, no figure

    Theoretical description of mixed film formation at the air/water interface : carboxylic acids–fatty amines

    No full text
    Thermodynamic parameters of mixed monolayer formation of aliphatic amines CnH2n+1NH2 and carboxylic acids CnH2n+1COOH (n = 6–16) are calculated using the quantum chemical semiempirical PM3 method. Four types of mixed dimers and tetramers amine–acid are considered. The total contribution of interactions between the hydrophilic parts of amine and acid into clusterization Gibbs energy is slightly lower than the corresponding interactions for individual surfactants. It suggests a synergetic interaction between the regarded amphiphilic compounds as proved by experimental data in the literature. Two types of competitive film formation are possible: mixed 2D film 1, where the molecules of the minor component are single distributed among the molecules of the prevailing second component (mixture of components on molecular level), and 2D film 2 with a domain structure comprised of pure component “islands” linked together. The dependence of the Gibbs energy of clusterization per monomer for 2D film 1 on the component mole fraction shows that the maximum synergetic effect is typical for the case that both surfactants have the same even number of carbon atoms in the hydrocarbon chain and form an equimolar mixture. Formation of 2D film 1 is more preferable than that of 2D film 2, if the difference of the hydrocarbon chain lengths is not larger than 5 methylene units. The limiting mole fraction of carboxylic acids in such mixed monolayers is 66.7%

    Correlation strength, Lifshitz transition and the emergence of a two- to three-dimensional crossover in FeSe under pressure

    Full text link
    We report a detailed theoretical study of the electronic structure, spectral properties, and lattice parameters of bulk FeSe under pressure using a fully charge self-consistent implementation of the density functional theory plus dynamical mean-field theory method (DFT+DMFT). In particular, we perform a structural optimization and compute the evolution of the lattice parameters (volume, c/ac/a ratio, and the internal zz position of Se) and the electronic structure of the tetragonal (space group P4/nmmP4/nmm) paramagnetic FeSe. Our results for the lattice parameters are in good quantitative agreement with experiment. The c/ac/a ratio is slightly overestimated by about 33~\%, presumably due to the absence of the van der Waals interactions between the FeSe layers in our calculations. The lattice parameters determined within DFT are off the experimental values by a remarkable \sim66-1515~\%, implying a crucial importance of electron correlations. Upon compression to 1010~GPa, the c/ac/a ratio and the lattice volume show a decrease by 22 and 1010~\%, respectively, while the Se zz coordinate weakly increases by \sim22~\%. Most importantly, our results reveal a topological change of the Fermi surface (Lifshitz transition) which is accompanied by a two- to three-dimensional crossover. Our results indicate a small reduction of the quasiparticle mass renormalization m/mm^*/m by about 55~\% for the ee and less than 11~\% for the t2t_2 states, as compared to ambient pressure. The behavior of the momentum-resolved magnetic susceptibility χ(q)\chi({\bf q}) shows no topological changes of magnetic correlations under pressure, but demonstrates a reduction of the degree of the in-plane (π,π)(\pi,\pi) stripe-type nesting. Our results for the electronic structure and lattice parameters of FeSe are in good qualitative agreement with recent experiments on its isoelectronic counterpart FeSe1x_{1-x}Sx_x.Comment: 10 pages, 6 figure

    Strong-Coupling Effects in "Dirty" Superfluid 3He^3He

    Full text link
    The contribution of the strong-coupling effects to the free energy of the "dirty" superfluid 3He^3He is estimated using a simple model. It is shown that the strong-coupling effects are less susceptible to the quasiparticle scattering events in comparison to the weak-coupling counterpart. This supports the conclusion about stabilization of the BB-phase in aerogel environment at pressures where the AA-phase takes over in bulk superfluid 3He^3He, in accordance with recent experimental observations in zero magnetic field.Comment: 10 pages, LaTeX file. This is a revised version of the paper with some additional comments and references, and corrected typos. Submitted to Journal of Physics: Condensed Matte

    Spontaneous mass current and textures of p-wave superfluids of trapped Fermionic atom gases at rest and under rotation

    Full text link
    It is found theoretically based on the Ginzburg-Landau framework that p-wave superfluids of neutral atom gases in three dimension harmonic traps exhibit spontaneous mass current at rest, whose direction depends on trap geometry. Under rotation various types of the order parameter textures are stabilized, including Mermin-Ho and Anderson-Toulouse-Chechetkin vortices. In a cigar shape trap spontaneous current flows longitudial to the rotation axis and thus perpendicular to the ordinary rotational current. These features, spontaneous mass current at rest and texture formation, can be used as diagnoses for p-wave superfluidity.Comment: 5 pages, 5 figure
    corecore