42 research outputs found
Induction of Eosinophil Apoptosis by the Cyclin-Dependent Kinase Inhibitor AT7519 Promotes the Resolution of Eosinophil-Dominant Allergic Inflammation
Eosinophils not only defend the body against parasitic infection but are also involved in pathological inflammatory allergic diseases such as asthma, allergic rhinitis and contact dermatitis. Clearance of apoptotic eosinophils by macrophages is a key process responsible for driving the resolution of eosinophilic inflammation and can be defective in allergic diseases. However, enhanced resolution of eosinophilic inflammation by deliberate induction of eosinophil apoptosis using pharmacological agents has not been previously demonstrated. Here we investigated the effect of a novel cyclin-dependent kinase inhibitor drug, AT7519, on human and mouse eosinophil apoptosis and examined whether it could enhance the resolution of a murine model of eosinophil-dominant inflammation in vivo.Eosinophils from blood of healthy donors were treated with AT7519 and apoptosis assessed morphologically and by flow-cytometric detection of annexin-V/propidium iodide staining. AT7519 induced eosinophil apoptosis in a concentration dependent manner. Therapeutic administration of AT7519 in eosinophil-dominant allergic inflammation was investigated using an established ovalbumin-sensitised mouse model of allergic pleurisy. Following ovalbumin challenge AT7519 was administered systemically at the peak of pleural inflammation and inflammatory cell infiltrate, apoptosis and evidence of macrophage phagocytosis of apoptotic eosinophils assessed at appropriate time points. Administration of AT7519 dramatically enhanced the resolution of allergic pleurisy via direct induction of eosinophil apoptosis without detriment to macrophage clearance of these cells. This enhanced resolution of inflammation was shown to be caspase-dependent as the effects of AT7519 were reduced by treatment with a broad spectrum caspase inhibitor (z-vad-fmk).Our data show that AT7519 induces human eosinophil apoptosis and enhances the resolution of a murine model of allergic pleurisy by inducing caspase-dependent eosinophil apoptosis and enhancing macrophage ingestion of apoptotic eosinophils. These findings demonstrate the utility of cyclin-dependent kinase inhibitors such as AT7519 as potential therapeutic agents for the treatment of eosinophil dominant allergic disorders
Nuclear localised more sulphur accumulation1 epigenetically regulates sulphur homeostasis in Arabidopsis thaliana
Sulphur (S) is an essential element for all living organisms. The uptake, assimilation and metabolism of S in plants are well studied. However, the regulation of S homeostasis remains largely unknown. Here, we report on the identification and characterisation of the more sulphur accumulation1 (msa1-1) mutant. The MSA1 protein is localized to the nucleus and is required for both S adenosylmethionine (SAM) production and DNA methylation. Loss of function of the nuclear localised MSA1 leads to a reduction in SAM in roots and a strong S-deficiency response even at ample S supply, causing an over- accumulation of sulphate, sulphite, cysteine and glutathione. Supplementation with SAM suppresses this high S phenotype. Furthermore, mutation of MSA1 affects genome-wide DNA methylation, including the methylation of S-deficiency responsive genes. Elevated S accumulation in msa1-1 requires the increased expression of the sulphate transporter genes SULTR1;1 and SULTR1;2 which are also differentially methylated in msa1-1. Our results suggest a novel function for MSA1 in the nucleus in regulating SAM biosynthesis and maintaining S homeostasis epigenetically via DNA methylation
Demokrasi di negara-negara muslim: problem dan prospek
Dalam panggung politik kotemporer, gerakan gerakan islam makin banyak melibatkan diri dalam isu demokratis dan masyarakat madani (civil society)