459 research outputs found

    Magnetotransport properties of FeSe in fields up to 50T

    Full text link
    Magnetotransport properties of the high-quality FeSe crystal, measured in a wide temperature range and in magnetic fields up to 50 T, show the symmetry of the main holelike and electronlike bands in this compound. In addition to the main two bands, there is also a tiny, highly mobile, electronlike band which is responsible for the non-linear behavior of ρxy\rho_{xy}(B) at low temperatures and some other peculiarities of FeSe. We observe the inversion of the ρxx\rho_{xx} temperature coeficient at a magnetic field higher than about 20 T which is an implicit conformation of the electron-hole symmetry in the main bands.Comment: MISM 201

    Highly mobile carriers in orthorhombic phases of iron-based superconductors FeSe1x{}_{1-x}Sx{}_{x}

    Full text link
    The field and temperature dependencies of the longitudinal and Hall resistivity have been measured for FeSe1x{}_{1-x}Sx{}_{x} (x=0.04, 0.09 and 0.19) single crystals. The sample FeSe0.81{}_{0.81}S0.19{}_{0.19} does not show a transition to an orthorhombic phase and exhibits at low temperatures the transport properties quite different from those of orthorhombic samples. The behavior of FeSe0.81{}_{0.81}S0.19{}_{0.19} is well described by the simple two band model with comparable values of hole and electron mobility. In particular, at low temperatures the transverse resistance shows a linear field dependence, the magnetoresistance follow a quadratic field dependence and obeys to Kohler's rule. In contrast, Kohler's rule is strongly violated for samples having an orthorhombic low temperature structure. However, the transport properties of the orthorhombic samples can be satisfactory described by the three band model with the pair of almost equivalent to the tetragonal sample hole and electron bands, supplemented with the highly mobile electron band which has two order smaller carrier number. Therefore, the peculiarity of the low temperature transport properties of the orthorhombic Fe(SeS) samples, as probably of many other orthorhombic iron superconductors, is due to the presence of a small number of highly mobile carriers which originate from the local regions of the Fermi surface, presumably, nearby the Van Hove singularity points

    Majority carrier type inversion in FeSe family and "doped semimetal" scheme in iron-based superconductors

    Full text link
    The field and temperature dependencies of the longitudinal and Hall resistivity have been studied for high-quality FeSe1x{}_{1-x}Sx{}_{x} (x up to 0.14) single crystals. Quasiclassical analysis of the obtained data indicates a strong variation of the electron and hole concentrations under the studied isovalent substitution and proximity of FeSe to the point of the majority carrier-type inversion. On this basis, we propose a `doped semimetal' scheme for the superconducting phase diagram of the FeSe family, which can be applied to other iron-based superconductors. In this scheme, the two local maxima of the superconducting temperature can be associated with the Van Hove singularities of a simplified semi-metallic electronic structure. The multicarrier analysis of the experimental data also reveals the presence of a tiny and highly mobile electron band for all the samples studied. Sulfur substitution in the studied range leads to a decrease in the number of mobile electrons by more than ten times, from about 3\% to about 0.2\%. This behavior may indicate a successive change of the Fermi level position relative to singular points of the electronic structure which is consistent with the `doped semimetal' scheme. The scattering time for mobile carriers does not depend on impurities, which allows us to consider this group as a possible source of unusual acoustic properties of FeSe

    Superconducting properties of sulfur-doped iron selenide

    Full text link
    The recent discovery of high-temperature superconductivity in single-layer iron selenide has generated significant experimental interest for optimizing the superconducting properties of iron-based superconductors through the lattice modification. For simulating the similar effect by changing the chemical composition due to S doping, we investigate the superconducting properties of high-quality single crystals of FeSe1x_{1-x}Sx_{x} (xx=0, 0.04, 0.09, and 0.11) using magnetization, resistivity, the London penetration depth, and low temperature specific heat measurements. We show that the introduction of S to FeSe enhances the superconducting transition temperature TcT_{c}, anisotropy, upper critical field Hc2H_{c2}, and critical current density JcJ_{c}. The upper critical field Hc2(T)H_{c2}(T) and its anisotropy are strongly temperature dependent, indicating a multiband superconductivity in this system. Through the measurements and analysis of the London penetration depth λab(T)\lambda _{ab}(T) and specific heat, we show clear evidence for strong coupling two-gap ss-wave superconductivity. The temperature-dependence of λab(T)\lambda _{ab}(T) calculated from the lower critical field and electronic specific heat can be well described by using a two-band model with ss-wave-like gaps. We find that a dd-wave and single-gap BCS theory under the weak-coupling approach can not describe our experiments. The change of specific heat induced by the magnetic field can be understood only in terms of multiband superconductivity.Comment: 13 pages, 7 figure

    Nanostructuring and surface hardening of structural steels by ultrasonic impact-frictional treatment

    Full text link
    With two structural steels (the steels 50 and 09G2S) as examples, the paper studies the effectiveness of a new method of ultrasonic impact-frictional treatment (UIFT) for the hardening and nanostructuring of the surface layer with the variation of the tilt angle of the vibrating indenter and the treatment environment. It is demonstrated that treatment with tool tilt angles different from 90° and with the absence of a contact liquid results in the formation of a nanostructured surface layer with increased microhardness. © 2018 Author(s)

    Synthesis and characterization of the new high pressure phases A Cu 3 v 4O 12 (A =Gd, Tb, Er)

    Full text link
    New ACu3V4O12 (A=Gd, Tb, Er) phases have been prepared at high pressure and high-temperature conditions (P∼8-9 GPa, T∼1000°C) in a toroid-type high pressure cell. These compounds crystallize in the cubic symmetry with a perovskite-like structure. At ambient pressure, they are paramagnetic and have activation-type conductivity. The effect of high pressure (10-50 GPa) on the electrical properties of the materials was analyzed in the temperature range from 78 to 300 K. Pressure ranges of the transition from activation type to metallic conductivity have been determined. The crystal structure of ACu3V4O12 (A=Gd, Tb, Er) was found to be stable up to 50 GPa. © 2013 Copyright Taylor and Francis Group, LLC

    Technical Review of Robotic Complexes for Underground Mining

    Full text link
    The paper contains classifies robots for work in mines, the tasks they perform, compares developments in this area with a description of the difficulties and solutions which have found. Social and economic difficulties that often hamper the process of automation and robotization of underground mining are given. © 2020 Published under licence by IOP Publishing Ltd
    corecore