7,423 research outputs found

    Gaussian modeling and Schmidt modes of SPDS biphoton states

    Full text link
    A double-Gaussian model and the Schmidt modes are found for the biphoton wave function characterizing spontaneous parametric down-conversion with the degenerate collinear phase-matching of the type I and with a pulsed pump. The obtained results are valid for all durations of the pump pulses, short, long and intermediately long

    Pion Polarizability in the NJL model and Possibilities of its Experimental Studies in Coulomb Nuclear Scattering

    Full text link
    The charge pion polarizability is calculated in the Nambu-Jona-Lasinio model, where the quark loops (in the mean field approximation) and the meson loops (in the 1/Nc1/N_c approximation) are taken into account. We show that quark loop contribution dominates, because the meson loops strongly conceal each other. The sigma-pole contribution (mσ2t)1(m^2_\sigma-t)^{-1} plays the main role and contains strong t-dependence of the effective pion polarizability at the region t4Mπ2|t|\geq 4M_\pi^2. Possibilities of experimental test of this sigma-pole effect in the reaction of Coulomb Nuclear Scattering are estimated for the COMPASS experiment.Comment: 11 pages, 8 figure

    Hirota equation as an example of integrable symplectic map

    Get PDF
    The hamiltonian formalism is developed for the sine-Gordon model on the space-time light-like lattice, first introduced by Hirota. The evolution operator is explicitely constructed in the quantum variant of the model, the integrability of the corresponding classical finite-dimensional system is established.Comment: 10 pages, LaTe

    Singularities inside non-Abelian black holes

    Get PDF
    Singularities inside static spherically symmetric black holes in the SU(2) Einstein-Yang-Mills and Einstein-Yang-Mills-dilaton theories are investigated. Analytical formulas are presented describing oscillatory and power law metric behavior near spacelike singularities in generic solutions.Comment: REVTeX, 9 pages, 2 EPS figures, uses epsf.st

    Anomalous transport in normal-superconducting and ferromagnetic-superconducting nanostructures

    Full text link
    We have calculated the temperature dependence of the conductance variation (δS(T)\delta S(T)) of mesoscopic superconductor normal metal(S/N) structures, in the diffusive regime, analysing both weak and strong proximity effects. We show that in the case of a weak proximity effect there are two peaks in the dependence of δS(T)\delta S(T) on temperature. One of them (known from previous studies) corresponds to a temperature T1T_1 of order of the Thouless energy (ϵTh\epsilon_{Th}), and another, newly predicted maximum, occurs at a temperature T2T_2 where the energy gap in the superconductor Δ(T2)\Delta(T_2) is of order ϵTh\epsilon_{Th}. In the limit Lϕ<LL_{\phi}<L the temperature T1T_1 is determined by D/Lϕ2D \hbar /L^2_{\phi} (LϕL_{\phi} is the phase breaking length), and not ϵTh\epsilon_{Th}. We have also calculated the voltage dependence δS(V) \delta S(V) for a S/F structure (F is a ferromagnet) and predict non-monotonic behaviour at voltages of order the Zeeman splitting.Comment: 6 figures. Submitted to PRB Rapid com
    corecore