141 research outputs found

    Differences in the Inflammatory Response of White Adipose Tissue and Adipose-Derived Stem Cells

    Get PDF
    The application of liposuctioned white adipose tissue (L-WAT) and adipose-derived stem cells (ADSCs) as a novel immunomodulatory treatment option is the currently subject of various clinical trials. Because it is crucial to understand the underlying therapeutic mechanisms, the latest studies focused on the immunomodulatory functions of L-WAT or ADSCs. However, studies that examine the specific transcriptional adaptation of these treatment options to an extrinsic inflammatory stimulus in an unbiased manner are scarce. The aim of this study was to compare the gene expression profile of L-WAT and ADSCs, when subjected to tumor necrosis factor alpha (TNF\textgreeka), and to identify key factors that might be therapeutically relevant when using L-WAT or ADSCs as an immuno-modulator. Fat tissue was harvested by liposuction from five human donors. ADSCs were isolated from the same donors and shortly subjected to expansion culture. L-WAT and ADSCs were treated with human recombinant TNF\textgreeka, to trigger a strong inflammatory response. Subsequently, an mRNA deep nextgeneration sequencing was performed to evaluate the different inflammatory responses of L-WAT and ADSCs. We found significant gene expression changes in both experimental groups after TNF\textgreeka incubation. However, ADSCs showed a more homogenous gene expression profile by predominantly expressing genes involved in immunomodulatory processes such as CCL19, CCL5, TNFSF15 and IL1b when compared to L-WAT, which reacted rather heterogeneously. As RNA sequencing between L-WAT and ADSCS treated with TNF\textgreeka revealed that L-WAT responded very heterogeneously to TNF\textgreeka treatment, we therefore conclude that ADSCs are more reliable and predictable when used therapeutically. Our study furthermore yields insight into potential biological processes regarding immune system response, inflammatory response, and cell activation. Our results can help to better understand the different immunomodulatory effects of L-WAT and ADSCs

    An Ambystoma mexicanum EST sequencing project: analysis of 17,352 expressed sequence tags from embryonic and regenerating blastema cDNA libraries

    Get PDF
    BACKGROUND: The ambystomatid salamander, Ambystoma mexicanum (axolotl), is an important model organism in evolutionary and regeneration research but relatively little sequence information has so far been available. This is a major limitation for molecular studies on caudate development, regeneration and evolution. To address this lack of sequence information we have generated an expressed sequence tag (EST) database for A. mexicanum. RESULTS: Two cDNA libraries, one made from stage 18-22 embryos and the other from day-6 regenerating tail blastemas, generated 17,352 sequences. From the sequenced ESTs, 6,377 contigs were assembled that probably represent 25% of the expressed genes in this organism. Sequence comparison revealed significant homology to entries in the NCBI non-redundant database. Further examination of this gene set revealed the presence of genes involved in important cell and developmental processes, including cell proliferation, cell differentiation and cell-cell communication. On the basis of these data, we have performed phylogenetic analysis of key cell-cycle regulators. Interestingly, while cell-cycle proteins such as the cyclin B family display expected evolutionary relationships, the cyclin-dependent kinase inhibitor 1 gene family shows an unusual evolutionary behavior among the amphibians. CONCLUSIONS: Our analysis reveals the importance of a comprehensive sequence set from a representative of the Caudata and illustrates that the EST sequence database is a rich source of molecular, developmental and regeneration studies. To aid in data mining, the ESTs have been organized into an easily searchable database that is freely available online

    A novel reverse transduction adenoviral array for the functional analysis of shRNA libraries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of novel drug targets by assessing gene functions is most conveniently achieved by high-throughput loss-of-function RNA interference screening. There is a growing need to employ primary cells in such screenings, since they reflect the physiological situation more closely than transformed cell lines do. Highly miniaturized and parallelized approaches as exemplified by reverse transfection or transduction arrays meet these requirements, hence we verified the applicability of an adenoviral microarray for the elucidation of gene functions in primary cells.</p> <p>Results</p> <p>Here, we present microarrays of infectious adenoviruses encoding short hairpin RNA (shRNA) as a new tool for gene function analysis. As an example to demonstrate its application, we chose shRNAs directed against seven selected human protein kinases, and we have performed quantitative analysis of phenotypical responses in primary human umbilical vein cells (HUVEC). These microarrays enabled us to infect the target cells in a parallelized and miniaturized procedure without significant cross-contamination: Viruses were reversibly immobilized in spots in such a way that the seeded cells were confined to the area of the viral spots, thus simplifying the subsequent addressing of genetically modified cells for analysis. Computer-assisted image analysis of fluorescence images was applied to analyze the cellular response after shRNA expression. Both the expression level of knock-down target proteins as well as the functional output as measured by caspase 3 activity and DNA fractionation (TUNEL) were quantified.</p> <p>Conclusion</p> <p>We have developed an adenoviral microarray technique suitable for miniaturized and parallelized analysis of gene function. The practicability of this technique was demonstrated by the analysis of several kinases involved in the activation of programmed cell death, both in tumor cells and in primary cells.</p

    NS1 Specific CD8(+) T-Cells with Effector Function and TRBV11 Dominance in a Patient with Parvovirus B19 Associated Inflammatory Cardiomyopathy

    Get PDF
    Background: Parvovirus B19 (B19V) is the most commonly detected virus in endomyocardial biopsies (EMBs) from patients with inflammatory cardiomyopathy (DCMi). Despite the importance of T-cells in antiviral defense, little is known about the role of B19V specific T-cells in this entity. Methodology and Principal Findings: An exceptionally high B19V viral load in EMBs (115,091 viral copies/mg nucleic acids), peripheral blood mononuclear cells (PBMCs) and serum was measured in a DCMi patient at initial presentation, suggesting B19V viremia. The B19V viral load in EMBs had decreased substantially 6 and 12 months afterwards, and was not traceable in PBMCs and the serum at these times. Using pools of overlapping peptides spanning the whole B19V proteome, strong CD8(+) T-cell responses were elicited to the 10-amico-acid peptides SALKLAIYKA (19.7% of all CD8(+) cells) and QSALKLAIYK (10%) and additional weaker responses to GLCPHCINVG (0.71%) and LLHTDFEQVM (0.06%). Real-time RT-PCR of IFN gamma secretion-assay-enriched T-cells responding to the peptides, SALKLAIYKA and GLCPHCINVG, revealed a disproportionately high T-cell receptor Vbeta (TRBV) 11 expression in this population. Furthermore, dominant expression of type-1 (IFN gamma, IL2, IL27 and Tbet) and of cytotoxic T-cell markers (Perforin and Granzyme B) was found, whereas gene expression indicating type-2 (IL4, GATA3) and regulatory T-cells (FoxP3) was low. Conclusions: Our results indicate that B19V Ag-specific CD8(+) T-cells with effector function are involved in B19V associated DCMi. In particular, a dominant role of TRBV11 and type-1/CTL effector cells in the T-cell mediated antiviral immune response is suggested. The persistence of B19V in the endomyocardium is a likely antigen source for the maintenance of CD8(+) T-cell responses to the identified epitopes

    Predictive biomarker discovery through the parallel integration of clinical trial and functional genomics datasets

    Get PDF
    The European Union multi-disciplinary Personalised RNA interference to Enhance the Delivery of Individualised Cytotoxic and Targeted therapeutics (PREDICT) consortium has recently initiated a framework to accelerate the development of predictive biomarkers of individual patient response to anti-cancer agents. The consortium focuses on the identification of reliable predictive biomarkers to approved agents with anti-angiogenic activity for which no reliable predictive biomarkers exist: sunitinib, a multi-targeted tyrosine kinase inhibitor and everolimus, a mammalian target of rapamycin (mTOR) pathway inhibitor. Through the analysis of tumor tissue derived from pre-operative renal cell carcinoma (RCC) clinical trials, the PREDICT consortium will use established and novel methods to integrate comprehensive tumor-derived genomic data with personalized tumor-derived small hairpin RNA and high-throughput small interfering RNA screens to identify and validate functionally important genomic or transcriptomic predictive biomarkers of individual drug response in patients. PREDICT's approach to predictive biomarker discovery differs from conventional associative learning approaches, which can be susceptible to the detection of chance associations that lead to overestimation of true clinical accuracy. These methods will identify molecular pathways important for survival and growth of RCC cells and particular targets suitable for therapeutic development. Importantly, our results may enable individualized treatment of RCC, reducing ineffective therapy in drug-resistant disease, leading to improved quality of life and higher cost efficiency, which in turn should broaden patient access to beneficial therapeutics, thereby enhancing clinical outcome and cancer survival. The consortium will also establish and consolidate a European network providing the technological and clinical platform for large-scale functional genomic biomarker discovery. Here we review our current understanding of molecular mechanisms driving resistance to anti-angiogenesis agents, the current limitations of laboratory and clinical trial strategies and how the PREDICT consortium will endeavor to identify a new generation of predictive biomarkers
    corecore