142 research outputs found

    Soluble ST2 plasma concentrations predict mortality in severe sepsis

    Get PDF
    Patients with sepsis-after surviving the initial hyperinflammatory phase-display features consistent with immunosuppression, including hyporesponsiveness of immunocompetent cells to bacterial agents. Immunosuppression is thought to be facilitated by negative regulators of toll-like receptors, including membrane-bound ST2. We investigated the release of soluble ST2 (sST2), a decoy receptor that inhibits membrane-bound ST2 signaling, during sepsis. The study population comprised 95 patients with severe sepsis admitted to one of two intensive care units (ICUs) at the day the diagnosis of severe sepsis was made. Blood was obtained daily from admission (day 0) until day 7 and finally at day 14. Twenty-four healthy subjects served as controls. sST2 and cytokines were measured in serum. Mortality among patients was 34% in the ICU and 45% in the hospital. On admission, sepsis patients had higher sST2 levels [10,989 (7,871-15,342) pg/ml, geometric mean (95% confidence interval, CI)] than controls [55 (20-145) pg/ml, P < 0.0001]. Serum sST2 remained elevated in patients from day 0 to 14 and correlated with disease severity scores (P < 0.001) and cytokine levels on day 0 and during course of disease (P < 0.0001). Nonsurvivors displayed elevated sST2 levels compared with survivors of the intensive care unit (P < 0.0001). Sepsis results in sustained elevation of serum sST2 levels, which correlates with disease severity and mortalit

    Innate Immune Deficiency of Extremely Premature Neonates Can Be Reversed by Interferon-γ

    Get PDF
    Background: Bacterial sepsis is a major threat in neonates born prematurely, and is associated with elevated morbidity and mortality. Little is known on the innate immune response to bacteria among extremely premature infants. Methodology/Principal Findings: We compared innate immune functions to bacteria commonly causing sepsis in 21 infants of less than 28 wks of gestational age, 24 infants born between 28 and 32 wks of gestational age, 25 term newborns and 20 healthy adults. Levels of surface expression of innate immune receptors (CD14, TLR2, TLR4, and MD-2) for Grampositive and Gram-negative bacteria were measured in cord blood leukocytes at the time of birth. The cytokine response to bacteria of those leukocytes as well as plasma-dependent opsonophagocytosis of bacteria by target leukocytes was also measured in the presence or absence of interferon-c. Leukocytes from extremely premature infants expressed very low levels of receptors important for bacterial recognition. Leukocyte inflammatory responses to bacteria and opsonophagocytic activity of plasma from premature infants were also severely impaired compared to term newborns or adults. These innate immune defects could be corrected when blood from premature infants was incubated ex vivo 12 hrs with interferon-c. Conclusion/Significance: Premature infants display markedly impaired innate immune functions, which likely account for their propensity to develop bacterial sepsis during the neonatal period. The fetal innate immune response progressivel

    Sickness behaviour pushed too far – the basis of the syndrome seen in severe protozoal, bacterial and viral diseases and post-trauma

    Get PDF
    Certain distinctive components of the severe systemic inflammatory syndrome are now well-recognized to be common to malaria, sepsis, viral infections, and post-trauma illness. While their connection with cytokines has been appreciated for some time, the constellation of changes that comprise the syndrome has simply been accepted as an empirical observation, with no theory to explain why they should coexist. New data on the effects of the main pro-inflammatory cytokines on the genetic control of sickness behaviour can be extended to provide a rationale for why this syndrome contains many of its accustomed components, such as reversible encephalopathy, gene silencing, dyserythropoiesis, seizures, coagulopathy, hypoalbuminaemia and hypertriglyceridaemia. It is thus proposed that the pattern of pathology that comprises much of the systemic inflammatory syndrome occurs when one of the usually advantageous roles of pro-inflammatory cytokines – generating sickness behaviour by moderately repressing genes (Dbp, Tef, Hlf, Per1, Per2 and Per3, and the nuclear receptor Rev-erbα) that control circadian rhythm – becomes excessive. Although reversible encephalopathy and gene silencing are severe events with potentially fatal consequences, they can be viewed as having survival advantages through lowering energy demand. In contrast, dyserythropoiesis, seizures, coagulopathy, hypoalbuminaemia and hypertriglyceridaemia may best be viewed as unfortunate consequences of extreme repression of these same genetic controls when the pro-inflammatory cytokines that cause sickness behaviour are produced excessively. As well as casting a new light on the previously unrationalized coexistence of these aspects of systemic inflammatory diseases, this concept is consistent with the case for a primary role for inflammatory cytokines in their pathogenesis across this range of diseases

    Synaptic AMPA receptor composition in development, plasticity and disease

    Get PDF

    Synaptic AMPA receptor composition in development, plasticity and disease

    Full text link

    Recent advances in amyotrophic lateral sclerosis

    Get PDF
    • …
    corecore