88 research outputs found

    Modeling the growth dynamics of four candidate crops for Controlled Ecological Life Support Systems (CELSS)

    Get PDF
    The production of food for human life support for advanced space missions will require the management of many different crops. The research to design these food production capabilities along with the waste management to recycle human metabolic wastes and inedible plant components are parts of Controlled Ecological Life Support Systems (CELSS). Since complete operating CELSS were not yet built, a useful adjunct to the research developing the various pieces of a CELSS are system simulation models that can examine what is currently known about the possible assembly of subsystems into a full CELSS. The growth dynamics of four crops (wheat, soybeans, potatoes, and lettuce) are examined for their general similarities and differences within the context of their important effects upon the dynamics of the gases, liquids, and solids in the CELSS. Data for the four crops currently under active research in the CELSS program using high-production hydroponics are presented. Two differential equations are developed and applied to the general characteristics of each crop growth pattern. Model parameters are determined by closely approximating each crop's data

    Multi-property modeling of ocean basin carbon fluxes

    Get PDF
    The objectives of this project were to elucidate the causal mechanisms in some of the most important features of the global ocean/atomsphere carbon system. These included the interaction of physical and biological processes in the seasonal cycle of surface water pCo2, and links between productivity, surface chlorophyll, and the carbon cycle that would aid global modeling efforts. In addition, several other areas of critical scientific interest involving links between the marine biosphere and the global carbon cycle were successfully pursued; specifically, a possible relation between phytoplankton emitted DMS and climate, and a relation between the location of calcium carbonate burial in the ocean and metamorphic source fluxes of CO2 to the atmosphere. Six published papers covering the following topics are summarized: (1) Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary; (2) Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial; (3) Controls on CO2 sources and sinks in the earthscale surface ocean; (4) pre-anthropogenic, earthscale patterns of delta pCO2 between ocean and atmosphere; (5) Effect on atmospheric CO2 from seasonal variations in the high latitude ocean; and (6) Limitations or relating ocean surface chlorophyll to productivity

    Crop growth and associated life support for a lunar farm

    Get PDF
    Supporting human life on a lunar base will require growing many different food crops. This paper investigates the growth dynamics of four crops (wheat, soybeans, potatoes, and lettuce) for general similarities and differences, along with associated material flows of the gases, liquids, and solids in a lunar farm. The human dietary requirements are compared with the protein, carbohydrate, and lipid contents of these hydroponically grown, high-productivity crops to derive a lunar farm diet. A simple and general analytical model is used to calculate the mass fluxes of CO2, H2O, HNO3, and O2 during the life cycle of each of the four crops. The resulting farm crop areas and corresponding biomass production rates are given. One significant conclusion of this study is that there is a 'lipid problem' associated with the incorporation of these four crops into a viable diet

    Climatic changes resulting from mass extinctions at the K-T boundary (and other bio-events)

    Get PDF
    The mass extinctions at the Cretaceous-Tertiary (K-T) boundary include about 90 percent of marine calcareous nannoplankton (coccoliths), and carbon-isotope data show that marine primary productivity was drastically reduced for about 500,000 years after the boundary event, the so-called Strangelove Ocean effect. One result of the elimination of most marine phytoplankton would have been a severe reduction in production of dimethyl sulfide (DMS), a biogenic gas that is believed to be the major precursor of cloud condensation nuclei (CCN) over the oceans. A drastic reduction in marine CCN should lead to a cloud canopy with significantly lower reflectivity, and hence cause a significant warming at the earth's surface. Calculations suggest that, all other things being held constant, a reduction in CCN of more than 80 percent (a reasonable value for the K-T extinctions) could have produced a rapid global warming of 6 C or more. Oxygen-isotope analyses of marine sediments, and other kinds of paleoclimatic data, have provided for a marked warming, and a general instability of climate coincident with the killoff of marine plankton at the K-T boundary. Similar reductions in phytoplankton abundance at other boundaries, as indicated by marked shifts in carbon-isotope curves, suggest that severe temperature changes may have accompanied other mass extinctions, and raises the intriguing possibility that the extinction events themselves could have contributed to the climatic instabilities at critical bio-events in the geologic record

    Transpiration during life cycle in controlled wheat growth

    Get PDF
    A previously developed model of wheat growth, designed for convenient incorporation into system level models of advanced space life support systems is described. The model is applied to data from an experiment that grew wheat under controlled conditions and measured fresh biomass and cumulated transpiration as a function of time. The adequacy of modeling the transpiration as proportional to the inedible biomass and an age factor that varies during the life cycle are discussed

    Mass balances for a biological life support system simulation model

    Get PDF
    Design decisions to aid the development of future space based biological life support systems (BLSS) can be made with simulation models. The biochemistry stoichiometry was developed for: (1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; (2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and (3) operation of the waste processor. Flux values for all components are derived for a steady state system with wheat as the sole food source. The large scale dynamics of a materially closed (BLSS) computer model is described in a companion paper. An extension of this methodology can explore multifood systems and more complex biochemical dynamics while maintaining whole system closure as a focus

    The dynamics of hydroponic crops for simulation studies of the CELSS initial reference configurations

    Get PDF
    The goal of this research is to develop a progressive series of mathematical models for the CELSS hydroponic crops. These models will systematize the experimental findings from the crop researchers in the CELSS Program into a form useful to investigate system-level considerations, for example, dynamic studies of the CELSS Initial Reference Configurations. The crop models will organize data from different crops into a common modeling framework. This is the fifth semiannual report for this project. The following topics are discussed: (1) use of field crop models to explore phasic control of CELSS crops for optimizing yield; (2) seminar presented at Purdue CELSS NSCORT; and (3) paper submitted on analysis of bioprocessing of inedible plant materials

    The dynamics of hydroponic crops for simulation studies of the CELSS initial reference configurations

    Get PDF
    During the past several years, the NASA Program in Controlled Ecological Life Support Systems (CELSS) has continued apace with crop research and logistic, technological, and scientific strides. These include the CELSS Test Facility planned for the space station and its prototype Engineering Development Unit, soon to be active at Ames Research Center (as well as the advanced crop growth research chamber at Ames); the large environmental growth chambers and the planned human test bed facility at Johnson Space Center; the NSCORT at Purdue with new candidate crops and diverse research into the CELSS components; the gas exchange data for soy, potatoes, and wheat from Kennedy Space Center (KSC); and the high-precision gas exchange data for wheat from Utah State University (USU). All these developments, taken together, speak to the need for crop modeling as a means to connect the findings of the crop physiologists with the engineers designing the system. A need also exists for crop modeling to analyze and predict the gas exchange data from the various locations to maximize the scientific yield from the experiments. One fruitful approach employs what has been called the 'energy cascade'. Useful as a basis for CELSS crop growth experimental design, the energy cascade as a generic modeling approach for CELSS crops is a featured accomplishment in this report. The energy cascade is a major tool for linking CELSS crop experiments to the system design. The energy cascade presented here can help collaborations between modelers and crop experimenters to develop the most fruitful experiments for pushing the limits of crop productivity. Furthermore, crop models using the energy cascade provide a natural means to compare, feature for feature, the crop growth components between different CELSS experiments, for example, at Utah State University and Kennedy Space Center

    Phasic Temperature Control Appraised With the Ceres-Wheat Model

    Get PDF
    Phasic control refers to the specification of a series of different environmental conditions during a crop\u27s life cycle, with the goal of optimizing some aspect of productivity. Because of the enormous number of possible scenarios, phasic control is an ideal situation for modeling to provide guidance prior to experiments. Here we use the Ceres-Wheat model, modified for hydroponic growth chambers, to examine temperature effects. We first establish a baseline by running the model at constant temperatures from 10°C to 30°C. Grain yield per day peaks at 15°C at a value that is 25 % higher than the yield at the commonly used 23 °C. We then show results for phasic control limited to a single shift in temperature and, finally, we examine scenarios that allow each of the five phases of the life cycle to have a different temperature. Results indicate that grain yield might be increased by 15-20% over the best yield at constant temperature, primarily from a boosted harvest index, which has the additional advantage of less waste biomass. Such gains, if achievable, would help optimize food production for life support systems. Experimental work should first verify the relationship between yield and temperature, and then move to selected scenarios of phasic control, based on model predictions

    Controlled Ecological Life Support Systems: Natural and Artificial Ecosystems

    Get PDF
    The scientists supported by the NASA sponsored Controlled Ecological Life Support Systems (CELSS) program have played a major role in creating a Committee on Space Research (COSPAR) section devoted to the development of bioregenerative life support for use in space. The series of 22 papers were sponsored by Subcommission F.4. The papers deal with many of the diverse aspects of life support, and with outgrowth technologies that may have commercial applications in fields such as biotechnology and bioengineering. Papers from researchers in France, Canada, Japan and the USSR are also presented
    corecore