114 research outputs found
Bypass transition in boundary layers including curvature and favorable pressure gradient effects
Recent studies of 2-D boundary layers undergoing bypass transition were reviewed. Bypass transition is characterized by the sudden appearance of turbulent spots in boundary layer without first the regular, observable growth of disturbances predicted by linear stability theory. There are no standard criteria or parameters for defining bypass transition, but it is known to be the mode of transition when the flow is disturbed by perturbations of sufficient amplitude
Experiments in Transitional Boundary Layers With Emphasis on High Free-Stream Disturbance Level, Surface Concave Curvature and Strong Favorable Streamwise Pressure Gradient Effects
Experiments on boundary layer transition with flat, concave and convex walls and various levels of free-stream disturbance and with zero and strong streamwise acceleration have been conducted. Measurements of both fluid mechanics and heat transfer processes were taken. Examples are profiles of mean velocity and temperature; Reynolds normal and shear stresses; turbulent streamwise and cross-stream heat fluxed; turbulent Prandtl number; and streamwise variations of wall skin friction and heat transfer coefficient values. Free-stream turbulence levels were varied over the range from about 0.3 percent to about 8 percent. The effects of curvature on the onset of transition under low disturbance conditions are clear; concave curvature leads to an earlier and more rapid transition and the opposite is true for convex curvature This was previously known but little documentation of the transport processes in the flow was availabl
Separated boundary layer transition under pressure gradient in the presence of free-stream turbulence
Large-eddy simulation (LES) has been carried out to investigate the transition process of a separated boundary layer on a flat plate. A streamwise pressure distribution is imposed to mimic the suction surface of a low-pressure turbine blade, and the free-stream turbulence intensity at the plate leading edge is 2.9%. A dynamic subgrid scale model is employed in the study, and the current LES results compare well with available experimental data and previous LES results. The transition process has been thoroughly analyzed, and streamwise streaky structures, known as the Klebanoff streaks, have been observed much further upstream of the separation. However, transition occurs in the separated shear layer and is caused by two mechanisms: streamwise streaks and the inviscid K-H instability. Analysis suggests that streamwise streaks play a dominant role in the transition process as those streaks severely disrupt and break up the K-H rolls once they are formed, leading to significant three-dimensional (3D) motions very rapidly. It is also demonstrated in the present study that the usual secondary instability stage under low free-stream turbulence intensity where coherent two-dimensional (2D) spanwise rolls get distorted gradually and eventually broken up into 3D structures has been bypassed.N/
Recommended from our members
Conditionally-Sampled Turbulent and Nonturbulent Measurements of Entropy Generation Rate in the Transition Region of Boundary Layers
Conditionally-sampled boundary layer data for an accelerating transitional boundary layer have been analyzed to calculate the entropy generation rate in the transition region. By weighing the nondimensional dissipation coefficient for the laminar-conditioned-data and turbulent-conditioned-data with the intermittency factor the average entropy generation rate in the transition region can be determined and hence be compared to the time averaged data and correlations for steady laminar and turbulent flows. It is demonstrated that this method provides, for the first time, an accurate and detailed picture of the entropy generation rate during transition. The data used in this paper have been taken from detailed boundary layer measurements available in the literature. This paper provides, using an intermittency weighted approach, a methodology for predicting entropy generation in a transitional boundary layer
A Computational Fluid Dynamics Study of Transitional Flows in Low-Pressure Turbines under a Wide Range of Operating Conditions
A transport equation for the intermittency factor is employed to predict the transitional flows in low-pressure turbines. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub p) with the intermittency factor, gamma. Turbulent quantities are predicted using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The model had been previously validated against low-pressure turbine experiments with success. In this paper, the model is applied to predictions of three sets of recent low-pressure turbine experiments on the Pack B blade to further validate its predicting capabilities under various flow conditions. Comparisons of computational results with experimental data are provided. Overall, good agreement between the experimental data and computational results is obtained. The new model has been shown to have the capability of accurately predicting transitional flows under a wide range of low-pressure turbine conditions
Oscillatory Shear Flow-Induced Alignment of Lamellar Melts of Hydrogen-Bonded Comb Copolymer Supramolecules
In this work we present the orientational behavior of comb copolymer-like supramolecules P4VP(PDP)1.0, obtained by hydrogen bonding between poly(4-vinylpyridine) and pentadecylphenol, during large-amplitude oscillatory shear flow experiments over a broad range of frequencies (0.001-10 Hz). The alignment diagram, presenting the macroscopic alignment in T/TODT vs ω/ωc, contains three regions of parallel alignment separated by a region of perpendicular alignment. For our material, the order-disorder temperature TODT = 67 °C and ωc, the frequency above which the distortion of the chain conformation dominates the materials’ viscoelasticity, is around 0.1 Hz at 61 °C. For the first time flipping from a pure transverse alignment via biaxial transverse/perpendicular alignment to a perpendicular alignment as a function of the strain amplitude was found.
- …