research

Separated boundary layer transition under pressure gradient in the presence of free-stream turbulence

Abstract

Large-eddy simulation (LES) has been carried out to investigate the transition process of a separated boundary layer on a flat plate. A streamwise pressure distribution is imposed to mimic the suction surface of a low-pressure turbine blade, and the free-stream turbulence intensity at the plate leading edge is 2.9%. A dynamic subgrid scale model is employed in the study, and the current LES results compare well with available experimental data and previous LES results. The transition process has been thoroughly analyzed, and streamwise streaky structures, known as the Klebanoff streaks, have been observed much further upstream of the separation. However, transition occurs in the separated shear layer and is caused by two mechanisms: streamwise streaks and the inviscid K-H instability. Analysis suggests that streamwise streaks play a dominant role in the transition process as those streaks severely disrupt and break up the K-H rolls once they are formed, leading to significant three-dimensional (3D) motions very rapidly. It is also demonstrated in the present study that the usual secondary instability stage under low free-stream turbulence intensity where coherent two-dimensional (2D) spanwise rolls get distorted gradually and eventually broken up into 3D structures has been bypassed.N/

    Similar works