239 research outputs found

    Two-loop AdS_5 x S^5 superstring: testing asymptotic Bethe ansatz and finite size corrections

    Full text link
    We continue the investigation of two-loop string corrections to the energy of a folded string with a spin S in AdS_5 and an angular momentum J in S^5, in the scaling limit of large J and S with ell=pi J/(lambda^(1/2) ln S)=fixed. We compute the generalized scaling function at two-loop order f_2(ell) both for small and large values of ell matching the predictions based on the asymptotic Bethe ansatz. In particular, in the small ell expansion, we derive an exact integral form for the ell-dependent coefficient of the Catalan's constant term in f_2(ell). Also, by resumming a certain subclass of multi-loop Feynman diagrams we obtain an exact expression for the leading (ln ell) part of f(lambda^(1/2), ell) which is valid to any order in the alpha'~1/lambda^(1/2) expansion. At large ell the string energy has a BMN-like expansion and the first few leading coefficients are expected to be the same at weak and at strong coupling. We provide a new example of this non-renormalization for the term which is generated at two loops in string theory and at one-loop in gauge theory (sub-sub-leading in 1/J). We also derive a simple algebraic formula for the term of maximal transcendentality in f_2(ell) expanded at large ell. In the second part of the paper we initiate the study of 2-loop finite size corrections to the string energy by formally compactifying the spatial world-sheet direction in the string action expanded near long fast-spinning string. We observe that the leading finite-size corrections are of "Casimir" type coming from terms containing at least one massless propagator. We consider in detail the one-loop order (reproducing the leading Landau-Lifshitz model prediction) and then focus on the two-loop contributions to the (1/ln S) term (for J=0). We find that in a certain regularization scheme used to discard power divergences the two-loop coefficient of the (1/ln S) term appears to vanish.Comment: 50 pages, 4 figures v2: typos corrected, references adde

    Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation

    Full text link
    Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled DC electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on DC electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/elemental sequences via species-selective photoionization. The shapes of the aperture and radio-frequency electrodes are optimized to minimize perturbation of the trapping pseudopotential. Laboratory experiments verify simulated potentials and characterize trapping lifetimes, stray electric fields, and ion heating rates, while measurement and cancellation of spatially-varying stray electric fields permits the formation of nearly-equally spaced ion chains.Comment: 17 pages (including references), 7 figure

    Demonstration of integrated microscale optics in surface-electrode ion traps

    Full text link
    In ion trap quantum information processing, efficient fluorescence collection is critical for fast, high-fidelity qubit detection and ion-photon entanglement. The expected size of future many-ion processors require scalable light collection systems. We report on the development and testing of a microfabricated surface-electrode ion trap with an integrated high numerical aperture (NA) micromirror for fluorescence collection. When coupled to a low NA lens, the optical system is inherently scalable to large arrays of mirrors in a single device. We demonstrate stable trapping and transport of 40Ca+ ions over a 0.63 NA micromirror and observe a factor of 1.9 enhancement in photon collection compared to the planar region of the trap.Comment: 15 pages, 8 figure

    From Scattering Amplitudes to the Dilatation Generator in N=4 SYM

    Full text link
    The complete spin chain representation of the planar N=4 SYM dilatation generator has long been known at one loop, where it involves leading nearest-neighbor 2 -> 2 interactions. In this work we use superconformal symmetry to derive the unique solution for the leading L -> 2 interactions of the planar dilatation generator for arbitrarily large L. We then propose that these interactions are given by the scattering operator that has N=4 SYM tree-level scattering amplitudes as matrix elements. We provide compelling evidence for this proposal, including explicit checks for L=2,3 and a proof of consistency with superconformal symmetry.Comment: 39 pages, v2: reference added and minor changes, published versio

    Nonperturbative scales in AdS/CFT

    Full text link
    The cusp anomalous dimension is a ubiquitous quantity in four-dimensional gauge theories, ranging from QCD to maximally supersymmetric N=4 Yang-Mills theory, and it is one of the best investigated observables in the AdS/CFT correspondence. In planar N=4 SYM theory, its perturbative expansion at weak coupling has a finite radius of convergence while at strong coupling it admits an expansion in inverse powers of the 't Hooft coupling which is given by a non-Borel summable asymptotic series. We study the cusp anomalous dimension in the transition regime from strong to weak coupling and argue that the transition is driven by nonperturbative, exponentially suppressed corrections. To compute these corrections, we revisit the calculation of the cusp anomalous dimension in planar N=4 SYM theory and extend the previous analysis by taking into account nonperturbative effects. We demonstrate that the scale parameterizing nonperturbative corrections coincides with the mass gap of the two-dimensional bosonic O(6) sigma model embedded into the AdS_5xS^5 string theory. This result is in agreement with the prediction coming from the string theory consideration.Comment: 49 pages, 1 figure; v2: minor corrections, references adde

    TBA-like equations and Casimir effect in (non-)perturbative AdS/CFT

    Full text link
    We consider high spin, ss, long twist, LL, planar operators (asymptotic Bethe Ansatz) of strong N=4{\cal N}=4 SYM. Precisely, we compute the minimal anomalous dimensions for large 't Hooft coupling λ\lambda to the lowest order of the (string) scaling variable L/(lnSλ)\ell \sim L/ (\ln \mathcal{S} \sqrt{\lambda}) with GKP string size lnS2ln(s/λ)\sim\ln \mathcal{S}\equiv 2 \ln (s/\sqrt{\lambda}). At the leading order (lnS)2(\ln \mathcal{S}) \cdot \ell ^2 , we can confirm the O(6) non-linear sigma model description for this bulk term, without boundary term (lnS)0(\ln \mathcal{S})^0. Going further, we derive, extending the O(6) regime, the exact effect of the size finiteness. In particular, we compute, at all loops, the first Casimir correction 0/lnS\ell ^0/\ln \mathcal{S} (in terms of the infinite size O(6) NLSM), which reveals only one massless mode (out of five), as predictable once the O(6) description has been extended. Consequently, upon comparing with string theory expansion, at one loop our findings agree for large twist, while reveal for negligible twist, already at this order, the appearance of wrapping. At two loops, as well as for next loops and orders, we can produce predictions, which may guide future string computations.Comment: Version 2 with: new exact expression for the Casimir energy derived (beyond the first two loops of the previous version); UV theory formulated and analysed extensively in the Appendix C; origin of the O(6) NLSM scattering clarified; typos correct and references adde

    Allogeneic hematopoietic cell transplantation for multiple myeloma in Europe: trends and outcomes over 25 years. A study by the EBMT Chronic Malignancies Working Party

    Get PDF
    We describe the use and outcomes of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for multiple myeloma (MM) in Europe between January 1990 and December 2012. We identified 7333 patients, median age at allo-HSCT was 51 years (range: 18-78), of whom 4539 (62%) were males. We distinguished three groups: (1) allo-HSCT upfront (n=1924), (2) tandem auto-allo-HSCT (n=2004) and (3) allo-HSCT as a second line treatment and beyond (n=3405). Overall, there is a steady increase in numbers of allo-HSCT over the years. Upfront allo-HSCT use increased up to year 2000, followed by a decrease thereafter and represented 12% of allo-HSCTs performed in 2012. Tandem auto-allo-HSCT peaked around year 2004 and contributed to 19% of allo-HSCTs in 2012. Allo-HSCT as salvage after one or two or three autografts was steadily increasing over the last years and represented 69% of allo-HSCTs in 2012. Remarkable heterogeneity in using allo-HSCT was observed among the different European countries. The 5-year survival probabilities from time of allo-HSCT for the three groups after year 2004 were 42%, 54% and 32%, respectively. These results show that the use of allo-HSCT is increasing in Europe, especially as second line treatment and beyond. There is an unmet need for well-designed prospective studies investigating allo-HSCT as salvage therapy for MM

    Quantum folded string and integrability: from finite size effects to Konishi dimension

    Get PDF
    Using the algebraic curve approach we one-loop quantize the folded string solution for the type IIB superstring in AdS(5)xS(5). We obtain an explicit result valid for arbitrary values of its Lorentz spin S and R-charge J in terms of integrals of elliptic functions. Then we consider the limit S ~ J ~ 1 and derive the leading three coefficients of strong coupling expansion of short operators. Notably, our result evaluated for the anomalous dimension of the Konishi state gives 2\lambda^{1/4}-4+2/\lambda^{1/4}. This reproduces correctly the values predicted numerically in arXiv:0906.4240. Furthermore we compare our result using some new numerical data from the Y-system for another similar state. We also revisited some of the large S computations using our methods. In particular, we derive finite--size corrections to the anomalous dimension of operators with small J in this limit.Comment: 20 pages, 1 figure; v2: references added, typos corrected; v3: major improvement of the references; v4: Discussion of short operators is restricted to the case n=1. This restriction does not affect the main results of the pape

    Liver Transplantation because of Acute Liver Failure due to Heme Arginate Overdose in a Patient with Acute Intermittent Porphyria

    Get PDF
    In acute attacks of acute intermittent porphyria, the mainstay of treatment is glucose and heme arginate administration. We present the case of a 58-year-old patient with acute liver failure requiring urgent liver transplantation after erroneous 6-fold overdose of heme arginate during an acute attack. As recommended in the product information, albumin and charcoal were administered and hemodiafiltration was started, which could not prevent acute liver failure, requiring super-urgent liver transplantation after 6 days. The explanted liver showed no preexisting liver cirrhosis, but signs of subacute liver injury and starting regeneration. The patient recovered within a short time. A literature review revealed four poorly documented cases of potential hepatic and/or renal toxicity of hematin or heme arginate. This is the first published case report of acute liver failure requiring super-urgent liver transplantation after accidental heme arginate overdose. The literature and recommendations in case of heme arginate overdose are summarized. Knowledge of a potentially fatal course is important for the management of future cases. If acute liver failure in case of heme arginate overdose is progressive, super-urgent liver transplantation has to be evaluated
    corecore