49 research outputs found

    LMDA Review, volume 8, issue 1 (sic)

    Get PDF
    Contents include: From the President, A Note on this Newsletter, A Call for Volunteers, Conference News: ATHE and LMDA, LMDA at ATHE: The Probable Conversion of a Skeptic, 1998 LMDA Conference, The 1997 LMDA Conference at Yale University: Looking Back, To My Colleagues (II), LMDA Advocacy Caucus, and Regional Vice-Presidents. Issue editor: Michele Volanskyhttps://soundideas.pugetsound.edu/lmdareview/1014/thumbnail.jp

    Time Variations in the Scale of Grand Unification

    Get PDF
    We study the consequences of time variations in the scale of grand unification, MUM_U, when the Planck scale and the value of the unified coupling at the Planck scale are held fixed. We show that the relation between the variations of the low energy gauge couplings is highly model dependent. It is even possible, in principle, that the electromagnetic coupling α\alpha varies, but the strong coupling α3\alpha_3 does not (to leading approximation). We investigate whether the interpretation of recent observations of quasar absorption lines in terms of time variation in α\alpha can be accounted for by time variation in MUM_U. Our formalism can be applied to any scenario where a time variation in an intermediate scale induces, through threshold corrections, time variations in the effective low scale couplings.Comment: 14 pages, revtex4; Updated observational results and improved statistical analysis (section IV); added reference

    Constraints on the electron-hole pair creation energy and Fano factor below 150 eV from Compton scattering in a Skipper-CCD

    Full text link
    Fully-depleted thick silicon Skipper-charge-coupled devices (Skipper-CCDs) are an important technology to probe neutrino and light-dark-matter interactions due to their sub-electron read-out noise. However, the successful search for rare neutrino or dark-matter events requires the signal and all backgrounds to be fully characterized. In particular, a measurement of the electron-hole pair creation energy below 150 eV and the Fano factor are necessary for characterizing the dark matter and neutrino signals. Moreover, photons from background radiation may Compton scatter in the silicon bulk, producing events that can mimic a dark matter or neutrino signal. We present a measurement of the Compton spectrum using a Skipper-CCD and a 241^{241}Am source. With these data, we estimate the electron-hole pair-creation energy to be (3.71±0.08)\left(3.71 \pm 0.08\right) eV at 130 K in the energy range between 99.3 eV and 150 eV. By measuring the widths of the steps at 99.3 eV and 150 eV in the Compton spectrum, we introduce a novel technique to measure the Fano factor, setting an upper limit of 0.31 at 90% C.L. These results prove the potential of Skipper-CCDs to characterize the Compton spectrum and to measure precisely the Fano factor and electron-hole pair creation energy below 150 eV

    Snowmass CF1 Summary: WIMP Dark Matter Direct Detection

    Get PDF
    As part of the Snowmass process, the Cosmic Frontier WIMP Direct Detection subgroup (CF1) has drawn on input from the Cosmic Frontier and the broader Particle Physics community to produce this document. The charge to CF1 was (a) to summarize the current status and projected sensitivity of WIMP direct detection experiments worldwide, (b) motivate WIMP dark matter searches over a broad parameter space by examining a spectrum of WIMP models, (c) establish a community consensus on the type of experimental program required to explore that parameter space, and (d) identify the common infrastructure required to practically meet those goals.Comment: Snowmass CF1 Final Summary Report: 47 pages and 28 figures with a 5 page appendix on instrumentation R&

    Vacuum Instabilities with a Wrong-Sign Higgs-Gluon-Gluon Amplitude

    Get PDF
    The recently discovered 125 GeV boson appears very similar to a Standard Model Higgs, but with data favoring an enhanced h to gamma gamma rate. A number of groups have found that fits would allow (or, less so after the latest updates, prefer) that the h-t-tbar coupling have the opposite sign. This can be given meaning in the context of an electroweak chiral Lagrangian, but it might also be interpreted to mean that a new colored and charged particle runs in loops and produces the opposite-sign hGG amplitude to that generated by integrating out the top, as well as a contribution reinforcing the W-loop contribution to hFF. In order to not suppress the rate of h to WW and h to ZZ, which appear to be approximately Standard Model-like, one would need the loop to "overshoot," not only canceling the top contribution but producing an opposite-sign hGG vertex of about the same magnitude as that in the SM. We argue that most such explanations have severe problems with fine-tuning and, more importantly, vacuum stability. In particular, the case of stop loops producing an opposite-sign hGG vertex of the same size as the Standard Model one is ruled out by a combination of vacuum decay bounds and LEP constraints. We also show that scenarios with a sign flip from loops of color octet charged scalars or new fermionic states are highly constrained.Comment: 20 pages, 8 figures; v2: references adde

    Asymmetric Dark Matter from Leptogenesis

    Full text link
    We present a new realization of asymmetric dark matter in which the dark matter and lepton asymmetries are generated simultaneously through two-sector leptogenesis. The right-handed neutrinos couple both to the Standard Model and to a hidden sector where the dark matter resides. This framework explains the lepton asymmetry, dark matter abundance and neutrino masses all at once. In contrast to previous realizations of asymmetric dark matter, the model allows for a wide range of dark matter masses, from keV to 10 TeV. In particular, very light dark matter can be accommodated without violating experimental constraints. We discuss several variants of our model that highlight interesting phenomenological possibilities. In one, late decays repopulate the symmetric dark matter component, providing a new mechanism for generating a large annihilation rate at the present epoch and allowing for mixed warm/cold dark matter. In a second scenario, dark matter mixes with the active neutrinos, thus presenting a distinct method to populate sterile neutrino dark matter through leptogenesis. At late times, oscillations and dark matter decays lead to interesting indirect detection signals.Comment: 32 pages + appendix, references added, minor change
    corecore