943 research outputs found

    Exploring GLIMPSE Bubble N107: Multiwavelength Observations and Simulations

    Full text link
    Context. Bubble N107 was discovered in the infrared emission of dust in the Galactic Plane observed by the Spitzer Space Telescope (GLIMPSE survey: l ~ 51.0 deg, b ~ 0.1 deg). The bubble represents an example of shell-like structures found all over the Milky Way Galaxy. Aims. We aim to analyse the atomic and molecular components of N107, as well as its radio continuum emission. With the help of numerical simulations, we aim to estimate the bubble age and other parameters which cannot be derived directly from observations. Methods. From the observations of the HI (I-GALFA) and 13CO (GRS) lines we derive the bubble's kinematical distance and masses of the atomic and molecular components. With the algorithm DENDROFIND, we decompose molecular material into individual clumps. From the continuum observations at 1420 MHz (VGPS) and 327 MHz (WSRT), we derive the radio flux density and the spectral index. With the numerical code ring, we simulate the evolution of stellar-blown bubbles similar to N107. Results. The total HI mass associated with N107 is 5.4E3 Msun. The total mass of the molecular component (a mixture of cold gasses of H2, CO, He and heavier elements) is 1.3E5 Msun, from which 4.0E4 Msun is found along the bubble border. We identified 49 molecular clumps distributed along the bubble border, with the slope of the clump mass function of -1.1. The spectral index of -0.30 of a strong radio source located apparently within the bubble indicates nonthermal emission, hence part of the flux likely originates in a supernova remnant, not yet catalogued. The numerical simulations suggest N107 is likely less than 2.25 Myr old. Since first supernovae explode only after 3 Myr or later, no supernova remnant should be present within the bubble. It may be explained if there is a supernova remnant in the direction towards the bubble, however not associated with it.Comment: 15 pages, 11 figure

    Black rings with a small electric charge: gyromagnetic ratios and algebraic alignment

    Get PDF
    We study electromagnetic test fields in the background of vacuum black rings using Killing vectors as vector potentials. We consider both spacetimes with a rotating S^1 and with a rotating S^2 and we demonstrate, in particular, that the gyromagnetic ratio of slightly charged black rings takes the value g=3 (this will in fact apply to a wider class of spacetimes). We also observe that a S^2-rotating black ring immersed in an external "aligned" magnetic field completely expels the magnetic flux in the extremal limit. Finally, we discuss the mutual alignment of principal null directions of the Maxwell 2-form and of the Weyl tensor, and the algebraic type of exact charged black rings. In contrast to spherical black holes, charged rings display new distinctive features and provide us with an explicit example of algebraically general (type G) spacetimes in higher dimensions. Appendix A contains some global results on black rings with a rotating 2-sphere. Appendix C shows that g=D-2 in any D>=4 dimensions for test electromagnetic fields generated by a time translation.Comment: 22 pages, 3 figures. v2: new appendix C finds the gyromagnetic ratio g=D-2 in any dimensions, two new references. To appear in JHE

    Role of Phytochelatins in Redox Caused Stress in Plants and Animals

    Get PDF
    Varied environmental compartments (such as soil and water) potentially contaminated with different metals/metalloids can impact the health of both plants and animals/humans. Trace amounts of Cu, Mn, Mo, Ni and Zn are beneficial for higher plants, whereas, Cr, Cu, Co, Mn, Mo, Se, V and Zn are known as the micronutrient metal/metalloids for animals/humans. However, elevated levels of the metals/metalloids can cause severe toxic consequences in both plants and animals/humans. Common in plants and animals/humans, phytochelatins (PCs), the principal non-protein, S-rich, thiolate peptides, protect (through different mechanisms) cellular functions and metal/metalloid homeostasis by performing their chelation and/or detoxification. With the major aim of broadening the current knowledge on the subject, this chapter (a) overviews PCs’ role and modulation separately in metal/metalloid-exposed plants and animals/humans; (b) discusses major methods for determination of PCs and bioassays for enzymes involved in PC synthesis; (c) evaluates the connection of PCs with bionanoparticles; and finally (d) highlights so far unexplored aspects in the present context

    Architecture for enhancing video analysis results using complementary resources

    Get PDF
    In this paper we present different sources of information complementary to audio-visual (A/V) streams and propose their usage for enriching A/V data with semantic concepts in order to bridge the gap between low-level video analysis and high-level analysis. Our aim is to extract cross-media feature descriptors from semantically enriched and aligned resources so as to detect finer-grained events in video. We introduce an architecture for complementary resources analysis and discuss domain dependency aspects of this approach connected to our initial domain of soccer broadcasts

    An architecture for mining resources complementary to audio-visual streams

    Get PDF
    In this paper we attempt to characterize resources of information complementary to audio-visual (A/V) streams and propose their usage for enriching A/V data with semantic concepts in order to bridge the gap between low-level video detectors and high-level analysis. Our aim is to extract cross-media feature descriptors from semantically enriched and aligned resources so as to detect finer-grained events in video.We introduce an architecture for complementary resource analysis and discuss domain dependency aspects of this approach related to our domain of soccer broadcasts

    Complexes of Silver(I) Ions and Silver Phosphate Nanoparticles with Hyaluronic Acid and/or Chitosan as Promising Antimicrobial Agents for Vascular Grafts

    Get PDF
    Polymers are currently widely used to replace a variety of natural materials with respect to their favourable physical and chemical properties, and due to their economic advantage. One of the most important branches of application of polymers is the production of different products for medical use. In this case, it is necessary to face a significant disadvantage of polymer products due to possible and very common colonization of the surface by various microorganisms that can pose a potential danger to the patient. One of the possible solutions is to prepare polymer with antibacterial/antimicrobial properties that is resistant to bacterial colonization. The aim of this study was to contribute to the development of antimicrobial polymeric material ideal for covering vascular implants with subsequent use in transplant surgery. Therefore, the complexes of polymeric substances (hyaluronic acid and chitosan) with silver nitrate or silver phosphate nanoparticles were created, and their effects on gram-positive bacterial culture of Staphylococcus aureus were monitored. Stages of formation of complexes of silver nitrate and silver phosphate nanoparticles with polymeric compounds were characterized using electrochemical and spectrophotometric methods. Furthermore, the antimicrobial activity of complexes was determined using the methods of determination of growth curves and zones of inhibition. The results of this study revealed that the complex of chitosan, with silver phosphate nanoparticles, was the most suitable in order to have an antibacterial effect on bacterial culture of Staphylococcus aureus. Formation of this complex was under way at low concentrations of chitosan. The results of electrochemical determination corresponded with the results of spectrophotometric methods and verified good interaction and formation of the complex. The complex has an outstanding antibacterial effect and this effect was of several orders higher compared to other investigated complexes

    Microguards and micromessengers of the genome

    Get PDF
    The regulation of gene expression is of fundamental importance to maintain organismal function and integrity and requires a multifaceted and highly ordered sequence of events. The cyclic nature of gene expression is known as ‘transcription dynamics’. Disruption or perturbation of these dynamics can result in significant fitness costs arising from genome instability, accelerated ageing and disease. We review recent research that supports the idea that an important new role for small RNAs, particularly microRNAs (miRNAs), is in protecting the genome against short-term transcriptional fluctuations, in a process we term ‘microguarding’. An additional emerging role for miRNAs is as ‘micromessengers’—through alteration of gene expression in target cells to which they are trafficked within microvesicles. We describe the scant but emerging evidence that miRNAs can be moved between different cells, individuals and even species, to exert biologically significant responses. With these two new roles, miRNAs have the potential to protect against deleterious gene expression variation from perturbation and to themselves perturb the expression of genes in target cells. These interactions between cells will frequently be subject to conflicts of interest when they occur between unrelated cells that lack a coincidence of fitness interests. Hence, there is the potential for miRNAs to represent both a means to resolve conflicts of interest, as well as instigate them. We conclude by exploring this conflict hypothesis, by describing some of the initial evidence consistent with it and proposing new ideas for future research into this exciting topic

    Optimizing viable leukocyte sampling from the female genital tract for clinical trials: an international multi-site study

    Get PDF
    BACKGROUND: Functional analysis of mononuclear leukocytes in the female genital mucosa is essential for understanding the immunologic effects of HIV vaccines and microbicides at the site of HIV exposure. However, the best female genital tract sampling technique is unclear. Methods and FINDINGS: We enrolled women from four sites in Africa and the US to compare three genital leukocyte sampling methods: cervicovaginal lavages (CVL), endocervical cytobrushes, and ectocervical biopsies. Absolute yields of mononuclear leukocyte subpopulations were determined by flow cytometric bead-based cell counting. Of the non-invasive sampling types, two combined sequential cytobrushes yielded significantly more viable mononuclear leukocytes than a CVL (p<0.0001). In a subsequent comparison, two cytobrushes yielded as many leukocytes (∌10,000) as one biopsy, with macrophages/monocytes being more prominent in cytobrushes and T lymphocytes in biopsies. Sample yields were consistent between sites. In a subgroup analysis, we observed significant reproducibility between replicate same-day biopsies (r = 0.89, p = 0.0123). Visible red blood cells in cytobrushes increased leukocyte yields more than three-fold (p = 0.0078), but did not change their subpopulation profile, indicating that these leukocytes were still largely derived from the mucosa and not peripheral blood. We also confirmed that many CD4 + T cells in the female genital tract express the α4ÎČ7 integrin, an HIV envelope-binding mucosal homing receptor. CONCLUSIONS: CVL sampling recovered the lowest number of viable mononuclear leukocytes. Two cervical cytobrushes yielded comparable total numbers of viable leukocytes to one biopsy, but cytobrushes and biopsies were biased toward macrophages and T lymphocytes, respectively. Our study also established the feasibility of obtaining consistent flow cytometric analyses of isolated genital cells from four study sites in the US and Africa. These data represent an important step towards implementing mucosal cell sampling in international clinical trials of HIV prevention
    • 

    corecore