3,826 research outputs found
Calcitonin receptor-like receptor is expressed on gastrointestinal immune cells
Background/Aims: Pharmacological and morphological studies suggest that the gut mucosal immune system and local neuropeptide-containing neurones interact. We aimed to determine whether gut immune cells are targets for calcitonin gene-related peptide (CGRP), which has potent immune regulatory properties. Methods: Using density gradient centrifugation, rat lamina propria mononuclear cells (LP-MNCs) and intra-epithelial lymphocytes (IELs) were isolated. RT-PCR was employed for the detection of mRNA of rat calcitonin receptor-like receptor (CRLR), which is considered to represent the pharmacologically defined CGRP receptor-1 subtype, as well as mRNA of the receptor activity-modifying proteins, which are essential for CRLR function and determine ligand specificity. A radioreceptor assay was employed for the detection of specific CGRP binding sites. Results: RT-PCR and DNA sequencing showed that LP-MNCs and IELs express CRLR. Incubation of isolated LP-MNCs with radiolabelled alphaCGRP revealed the existence of specific binding sites for CGRP. Conclusion: These novel data indicate that mucosal immune cells of the rat gut are a target for CGRP and provide significant evidence that CGRP functions as an immune regulator in the gut mucosa. Copyright (C) 2002 S. Karger AG, Basel
The D-Grid Integration Project: How to Build a Grid for Different Communities
The Grid world is highly dynamic due to the appearance of new resources, easier access and new Grid applications. Moreover, an increasing number of scientific communities begins to realize that Grids will become an indispensable tool for modern science. However, the requirements of those communities often differ significantly from each other. Therefore, it is a particularly di±cult challenge to establish a national Grid infrastructure that serves as many communities as possible. To address this challenge, the German D-Grid has developed a concept that is based on development of independent Community Grids that are connected with a single integration project. Further, the process will involve several steps to consider dependencies between the various projects and their tasks. Presently, we are still at the beginning of the realization of a German Grid. Therefore in this paper, we first briefly explain this concept in this paper. Then we focus on the integration project and describe its tasks in more detail. This includes some first results and experiences that were achieved within the first year of the project. Finally, some plans for future steps are presented
High pressure Ca-VI phase between 158-180 GPa: Stability, electronic structure and superconductivity
We have performed ab initio calculations for new high-pressure phase of Ca-VI
between 158-180 GPa. The study includes elastic parameters of mono- and
poly-crystalline aggregates, electronic band structure, lattice dynamics and
superconductivity. The calculations show that the orthorhombic Pnma structure
is mechanically and dynamically stable in the pressure range studied. The
structure is superconducting in the entire pressure range and the calculated Tc
(~25K) is maximum at ~172 GPa, where the transfer of charges from 4s to 3d may
be thought to be completed.Comment: 8 pages, 4 figures; PACS number(s): 74.70.Ad, 62.20.de, 71.20.-b,
74.20.Pq, 74.25.Kc, 74.62.Fj; Keywords: Calcium; High pressure; Electronic
band structure; Phonon spectrum; Elastic constants; Superconducto
Spin-Peierls instability in a quantum spin chain with Dzyaloshinskii-Moriya interaction
We analysed the ground state energy of some dimerized spin-1/2 transverse XX
and Heisenberg chains with Dzyaloshinskii-Moriya (DM) interaction to study the
influence of the latter interaction on the spin-Peierls instability. We found
that DM interaction may act either in favour of the dimerization or against it.
The actual result depends on the dependence of DM interaction on the distortion
amplitude in comparison with such dependence for the isotropic exchange
interaction.Comment: 12 pages, latex, 3 figure
The dynamical evolution of the circumstellar gas around low-and intermediate-mass stars I: the AGB
We have investigated the dynamical interaction of low- and-intermediate mass
stars (from 1 to 5 Msun) with their interstellar medium (ISM). In this first
paper, we examine the structures generated by the stellar winds during the
Asymptotic Giant Branch (AGB) phase, using a numerical code and the wind
history predicted by stellar evolution. The influence of the external ISM is
also taken into account. We find that the wind variations associated with the
thermal pulses lead to the formation of transient shells with an average
lifetime of 20,000 yr, and consequently do not remain recorded in the density
or velocity structure of the gas. The formation of shells that survive at the
end of the AGB occurs via two main processes: shocks between the shells formed
by two consecutive enhancements of the mass-loss or via continuous accumulation
of the material ejected by the star in the interaction region with the ISM. Our
models show that the mass of the circumstellar envelope increases appreciably
due to the ISM material swept up by the wind (up to 70 % for the 1 Msun stellar
model). We also point out the importance of the ISM on the deceleration and
compression of the external shells. According to our simulations, large regions
(up to 2.5 pc) of neutral gas surrounding the molecular envelopes of AGB stars
are expected. These large regions of gas are formed from the mass-loss
experienced by the star during the AGB evolution.Comment: 43 pages, 15 figures. Accepted for publication in the Astrophysical
Journa
Epidemic analysis of the second-order transition in the Ziff-Gulari-Barshad surface-reaction model
We study the dynamic behavior of the Ziff-Gulari-Barshad (ZGB) irreversible
surface-reaction model around its kinetic second-order phase transition, using
both epidemic and poisoning-time analyses. We find that the critical point is
given by p_1 = 0.3873682 \pm 0.0000015, which is lower than the previous value.
We also obtain precise values of the dynamical critical exponents z, \delta,
and \eta which provide further numerical evidence that this transition is in
the same universality class as directed percolation.Comment: REVTEX, 4 pages, 5 figures, Submitted to Physical Review
Phase transition of a two dimensional binary spreading model
We investigated the phase transition behavior of a binary spreading process
in two dimensions for different particle diffusion strengths (). We found
that cluster mean-field approximations must be considered to get
consistent singular behavior. The approximations result in a continuous
phase transition belonging to a single universality class along the phase transition line. Large scale simulations of the particle density
confirmed mean-field scaling behavior with logarithmic corrections. This is
interpreted as numerical evidence supporting that the upper critical dimension
in this model is .The pair density scales in a similar way but with an
additional logarithmic factor to the order parameter. At the D=0 endpoint of
the transition line we found DP criticality.Comment: 8 pages, 10 figure
Rotational modes in molecular magnets with antiferromagnetic Heisenberg exchange
In an effort to understand the low temperature behavior of recently
synthesized molecular magnets we present numerical evidence for the existence
of a rotational band in systems of quantum spins interacting with
nearest-neighbor antiferromagnetic Heisenberg exchange. While this result has
previously been noted for ring arrays with an even number of spin sites, we
find that it also applies for rings with an odd number of sites as well as for
all of the polytope configurations we have investigated (tetrahedron, cube,
octahedron, icosahedron, triangular prism, and axially truncated icosahedron).
It is demonstrated how the rotational band levels can in many cases be
accurately predicted using the underlying sublattice structure of the spin
array. We illustrate how the characteristics of the rotational band can provide
valuable estimates for the low temperature magnetic susceptibility.Comment: 14 pages, 7 figures, to be published in Phys. Rev.
- âŠ