3,826 research outputs found

    Calcitonin receptor-like receptor is expressed on gastrointestinal immune cells

    Get PDF
    Background/Aims: Pharmacological and morphological studies suggest that the gut mucosal immune system and local neuropeptide-containing neurones interact. We aimed to determine whether gut immune cells are targets for calcitonin gene-related peptide (CGRP), which has potent immune regulatory properties. Methods: Using density gradient centrifugation, rat lamina propria mononuclear cells (LP-MNCs) and intra-epithelial lymphocytes (IELs) were isolated. RT-PCR was employed for the detection of mRNA of rat calcitonin receptor-like receptor (CRLR), which is considered to represent the pharmacologically defined CGRP receptor-1 subtype, as well as mRNA of the receptor activity-modifying proteins, which are essential for CRLR function and determine ligand specificity. A radioreceptor assay was employed for the detection of specific CGRP binding sites. Results: RT-PCR and DNA sequencing showed that LP-MNCs and IELs express CRLR. Incubation of isolated LP-MNCs with radiolabelled alphaCGRP revealed the existence of specific binding sites for CGRP. Conclusion: These novel data indicate that mucosal immune cells of the rat gut are a target for CGRP and provide significant evidence that CGRP functions as an immune regulator in the gut mucosa. Copyright (C) 2002 S. Karger AG, Basel

    The D-Grid Integration Project: How to Build a Grid for Different Communities

    Get PDF
    The Grid world is highly dynamic due to the appearance of new resources, easier access and new Grid applications. Moreover, an increasing number of scientific communities begins to realize that Grids will become an indispensable tool for modern science. However, the requirements of those communities often differ significantly from each other. Therefore, it is a particularly di±cult challenge to establish a national Grid infrastructure that serves as many communities as possible. To address this challenge, the German D-Grid has developed a concept that is based on development of independent Community Grids that are connected with a single integration project. Further, the process will involve several steps to consider dependencies between the various projects and their tasks. Presently, we are still at the beginning of the realization of a German Grid. Therefore in this paper, we first briefly explain this concept in this paper. Then we focus on the integration project and describe its tasks in more detail. This includes some first results and experiences that were achieved within the first year of the project. Finally, some plans for future steps are presented

    High pressure Ca-VI phase between 158-180 GPa: Stability, electronic structure and superconductivity

    Full text link
    We have performed ab initio calculations for new high-pressure phase of Ca-VI between 158-180 GPa. The study includes elastic parameters of mono- and poly-crystalline aggregates, electronic band structure, lattice dynamics and superconductivity. The calculations show that the orthorhombic Pnma structure is mechanically and dynamically stable in the pressure range studied. The structure is superconducting in the entire pressure range and the calculated Tc (~25K) is maximum at ~172 GPa, where the transfer of charges from 4s to 3d may be thought to be completed.Comment: 8 pages, 4 figures; PACS number(s): 74.70.Ad, 62.20.de, 71.20.-b, 74.20.Pq, 74.25.Kc, 74.62.Fj; Keywords: Calcium; High pressure; Electronic band structure; Phonon spectrum; Elastic constants; Superconducto

    Spin-Peierls instability in a quantum spin chain with Dzyaloshinskii-Moriya interaction

    Full text link
    We analysed the ground state energy of some dimerized spin-1/2 transverse XX and Heisenberg chains with Dzyaloshinskii-Moriya (DM) interaction to study the influence of the latter interaction on the spin-Peierls instability. We found that DM interaction may act either in favour of the dimerization or against it. The actual result depends on the dependence of DM interaction on the distortion amplitude in comparison with such dependence for the isotropic exchange interaction.Comment: 12 pages, latex, 3 figure

    The dynamical evolution of the circumstellar gas around low-and intermediate-mass stars I: the AGB

    Get PDF
    We have investigated the dynamical interaction of low- and-intermediate mass stars (from 1 to 5 Msun) with their interstellar medium (ISM). In this first paper, we examine the structures generated by the stellar winds during the Asymptotic Giant Branch (AGB) phase, using a numerical code and the wind history predicted by stellar evolution. The influence of the external ISM is also taken into account. We find that the wind variations associated with the thermal pulses lead to the formation of transient shells with an average lifetime of 20,000 yr, and consequently do not remain recorded in the density or velocity structure of the gas. The formation of shells that survive at the end of the AGB occurs via two main processes: shocks between the shells formed by two consecutive enhancements of the mass-loss or via continuous accumulation of the material ejected by the star in the interaction region with the ISM. Our models show that the mass of the circumstellar envelope increases appreciably due to the ISM material swept up by the wind (up to 70 % for the 1 Msun stellar model). We also point out the importance of the ISM on the deceleration and compression of the external shells. According to our simulations, large regions (up to 2.5 pc) of neutral gas surrounding the molecular envelopes of AGB stars are expected. These large regions of gas are formed from the mass-loss experienced by the star during the AGB evolution.Comment: 43 pages, 15 figures. Accepted for publication in the Astrophysical Journa

    Epidemic analysis of the second-order transition in the Ziff-Gulari-Barshad surface-reaction model

    Full text link
    We study the dynamic behavior of the Ziff-Gulari-Barshad (ZGB) irreversible surface-reaction model around its kinetic second-order phase transition, using both epidemic and poisoning-time analyses. We find that the critical point is given by p_1 = 0.3873682 \pm 0.0000015, which is lower than the previous value. We also obtain precise values of the dynamical critical exponents z, \delta, and \eta which provide further numerical evidence that this transition is in the same universality class as directed percolation.Comment: REVTEX, 4 pages, 5 figures, Submitted to Physical Review

    Phase transition of a two dimensional binary spreading model

    Full text link
    We investigated the phase transition behavior of a binary spreading process in two dimensions for different particle diffusion strengths (DD). We found that N>2N>2 cluster mean-field approximations must be considered to get consistent singular behavior. The N=3,4N=3,4 approximations result in a continuous phase transition belonging to a single universality class along the D∈(0,1)D\in (0,1) phase transition line. Large scale simulations of the particle density confirmed mean-field scaling behavior with logarithmic corrections. This is interpreted as numerical evidence supporting that the upper critical dimension in this model is dc=2d_c=2.The pair density scales in a similar way but with an additional logarithmic factor to the order parameter. At the D=0 endpoint of the transition line we found DP criticality.Comment: 8 pages, 10 figure

    Rotational modes in molecular magnets with antiferromagnetic Heisenberg exchange

    Full text link
    In an effort to understand the low temperature behavior of recently synthesized molecular magnets we present numerical evidence for the existence of a rotational band in systems of quantum spins interacting with nearest-neighbor antiferromagnetic Heisenberg exchange. While this result has previously been noted for ring arrays with an even number of spin sites, we find that it also applies for rings with an odd number of sites as well as for all of the polytope configurations we have investigated (tetrahedron, cube, octahedron, icosahedron, triangular prism, and axially truncated icosahedron). It is demonstrated how the rotational band levels can in many cases be accurately predicted using the underlying sublattice structure of the spin array. We illustrate how the characteristics of the rotational band can provide valuable estimates for the low temperature magnetic susceptibility.Comment: 14 pages, 7 figures, to be published in Phys. Rev.
    • 

    corecore