413 research outputs found

    Approaching the Ground State of Frustrated A-site Spinels: A Combined Magnetization and Polarized Neutron Scattering Study

    Get PDF
    We re-investigate the magnetically frustrated, {\it diamond-lattice-antiferromagnet} spinels FeAl2_2O4_4 and MnAl2_2O4_4 using magnetization measurements and diffuse scattering of polarized neutrons. In FeAl2_2O4_4, macroscopic measurements evidence a "cusp" in zero field-cooled susceptibility around 13~K. Dynamic magnetic susceptibility and {\it memory effect} experiments provide results that do not conform with a canonical spin-glass scenario in this material. Through polarized neutron scattering studies, absence of long-range magnetic order down to 4~K is confirmed in FeAl2_2O4_4. By modeling the powder averaged differential magnetic neutron scattering cross-section, we estimate that the spin-spin correlations in this compound extend up to the third nearest-neighbour shell. The estimated value of the Land\'{e} gg factor points towards orbital contributions from Fe2+^{2+}. This is also supported by a Curie-Weiss analysis of the magnetic susceptibility. MnAl2_2O4_4, on the contrary, undergoes a magnetic phase transition into a long-range ordered state below \approx 40~K, which is confirmed by macroscopic measurements and polarized neutron diffraction. However, the polarized neutron studies reveal the existence of prominent spin-fluctuations co-existing with long-range antiferromagnetic order. The magnetic diffuse intensity suggests a similar short range order as in FeAl2_2O4_4. Results of the present work supports the importance of spin-spin correlations in understanding magnetic response of frustrated magnets like AA-site spinels which have predominant short-range spin correlations reminiscent of the "spin liquid" state.Comment: 10 pages, 10 figures, double-column, accepted in Phys. Rev. B, 201

    Structural and magnetic properties of [\lbrackErTb]\rbrackmultilayers

    Get PDF
    Abstract.: We have investigated the structural and magnetic properties of [\lbrack Er|Tb ]\rbrack multilayers by different scattering methods. Diffuse X-ray scattering under grazing incidence reveals the interface structure in [\lbrack Er|Tb ]\rbrack bilayers and trilayers, indicating vertically correlated roughness between the Er and Tb interfaces. The magnetic properties of [\lbrack ErnEr|TbnTb ]\rbrack superlattices have been studied as a function of the superlattice composition (indices denote the number of atomic layers). Coupled ferromagnetic structures exist in all investigated samples. The phase transition temperature varies with the Tb layer thickness. Modulated magnetic order is short range for all samples beside the [\lbrack Er20|Tb5 ]\rbrack superlattice, the sample with the smallest Tb layer thickness. We observe dipolar antiferromagnetic coupling between single ferromagnetic Tb layers in all samples, with the onset of this ordering depending on the Tb layer thickness. Due to competing interactions, exchange coupling is limited to the interface near region. Therefore long range modulated magnetic order is observed in the [\lbrack Er20|Tb5 ]\rbrack superlattice only, where the interface regions overlap. The distinct differences to the magnetic structure of an Er0.8Tb0.2 alloy film are explained by a highly anisotropic arrangement of neighbouring atoms due to the correlated roughnes

    Approaching the Ground State of Frustrated A-site Spinels: A Combined Magnetization and Polarized Neutron Scattering Study

    Get PDF
    We re-investigate the magnetically frustrated, {\it diamond-lattice-antiferromagnet} spinels FeAl2_2O4_4 and MnAl2_2O4_4 using magnetization measurements and diffuse scattering of polarized neutrons. In FeAl2_2O4_4, macroscopic measurements evidence a "cusp" in zero field-cooled susceptibility around 13~K. Dynamic magnetic susceptibility and {\it memory effect} experiments provide results that do not conform with a canonical spin-glass scenario in this material. Through polarized neutron scattering studies, absence of long-range magnetic order down to 4~K is confirmed in FeAl2_2O4_4. By modeling the powder averaged differential magnetic neutron scattering cross-section, we estimate that the spin-spin correlations in this compound extend up to the third nearest-neighbour shell. The estimated value of the Land\'{e} gg factor points towards orbital contributions from Fe2+^{2+}. This is also supported by a Curie-Weiss analysis of the magnetic susceptibility. MnAl2_2O4_4, on the contrary, undergoes a magnetic phase transition into a long-range ordered state below \approx 40~K, which is confirmed by macroscopic measurements and polarized neutron diffraction. However, the polarized neutron studies reveal the existence of prominent spin-fluctuations co-existing with long-range antiferromagnetic order. The magnetic diffuse intensity suggests a similar short range order as in FeAl2_2O4_4. Results of the present work supports the importance of spin-spin correlations in understanding magnetic response of frustrated magnets like AA-site spinels which have predominant short-range spin correlations reminiscent of the "spin liquid" state.Comment: 10 pages, 10 figures, double-column, accepted in Phys. Rev. B, 201

    Dynamic response of a cracked atomic force microscope cantilever used for nanomachining

    Get PDF
    The vibration behavior of an atomic force microscope [AFM] cantilever with a crack during the nanomachining process is studied. The cantilever is divided into two segments by the crack, and a rotational spring is used to simulate the crack. The two individual governing equations of transverse vibration for the cracked cantilever can be expressed. However, the corresponding boundary conditions are coupled because of the crack interaction. Analytical expressions for the vibration displacement and natural frequency of the cracked cantilever are obtained. In addition, the effects of crack flexibility, crack location, and tip length on the vibration displacement of the cantilever are analyzed. Results show that the crack occurs in the AFM cantilever that can significantly affect its vibration response

    Analytical solutions for two heteronuclear atoms in a ring trap

    Full text link
    We consider two heteronuclear atoms interacting with a short-range δ\delta potential and confined in a ring trap. By taking the Bethe-ansatz-type wavefunction and considering the periodic boundary condition properly, we derive analytical solutions for the heteronuclear system. The eigen-energies represented in terms of quasi-momentums can then be determined by solving a set of coupled equations. We present a number of results, which display different features from the case of identical atoms. Our result can be reduced to the well-known Lieb-Liniger solution when two interacting atoms have the same masses.Comment: 6 pages, 6 figure

    Recent results from Pb-Au collisions at 158 GeV/c per nucleon obtained with the CERES spectrometer

    Full text link
    During the 1996 lead run time, CERES has accumulated 42 million events, corresponding to a factor of 5 more statistics than in 1995 and 2.5 million events of a special photon-run. We report on the results of the low-mass e+^+e^--pair analysis. Since the most critical item is the poor signal-to-background ratio we also discuss the understanding of this background, in absolute terms, with the help of a detailed Monte Carlo simulation. We show preliminary results of the photon analysis and summarize the results of the hadron analysis preliminarily reported on already at QM'97Comment: 10 pages, 9 figures, Proceedings of the XIV Int. Conf. on Nucleus-Nucleus Collisions,Quark Matter 99, Torino, Italy, May 10 - 15, 199

    Design principles for riboswitch function

    Get PDF
    Scientific and technological advances that enable the tuning of integrated regulatory components to match network and system requirements are critical to reliably control the function of biological systems. RNA provides a promising building block for the construction of tunable regulatory components based on its rich regulatory capacity and our current understanding of the sequence–function relationship. One prominent example of RNA-based regulatory components is riboswitches, genetic elements that mediate ligand control of gene expression through diverse regulatory mechanisms. While characterization of natural and synthetic riboswitches has revealed that riboswitch function can be modulated through sequence alteration, no quantitative frameworks exist to investigate or guide riboswitch tuning. Here, we combined mathematical modeling and experimental approaches to investigate the relationship between riboswitch function and performance. Model results demonstrated that the competition between reversible and irreversible rate constants dictates performance for different regulatory mechanisms. We also found that practical system restrictions, such as an upper limit on ligand concentration, can significantly alter the requirements for riboswitch performance, necessitating alternative tuning strategies. Previous experimental data for natural and synthetic riboswitches as well as experiments conducted in this work support model predictions. From our results, we developed a set of general design principles for synthetic riboswitches. Our results also provide a foundation from which to investigate how natural riboswitches are tuned to meet systems-level regulatory demands
    corecore