9,476 research outputs found

    Magnetic Field Seeding by Galactic Winds

    Full text link
    The origin of intergalactic magnetic fields is still a mystery and several scenarios have been proposed so far: among them, primordial phase transitions, structure formation shocks and galactic outflows. In this work we investigate how efficiently galactic winds can provide an intense and widespread "seed" magnetisation. This may be used to explain the magnetic fields observed today in clusters of galaxies and in the intergalactic medium (IGM). We use semi-analytic simulations of magnetised galactic winds coupled to high resolution N-body simulations of structure formation to estimate lower and upper limits for the fraction of the IGM which can be magnetised up to a specified level. We find that galactic winds are able to seed a substantial fraction of the cosmic volume with magnetic fields. Most regions affected by winds have magnetic fields in the range -12 < Log B < -8 G, while higher seed fields can be obtained only rarely and in close proximity to wind-blowing galaxies. These seed fields are sufficiently intense for a moderately efficient turbulent dynamo to amplify them to the observed values. The volume filling factor of the magnetised regions strongly depends on the efficiency of winds to load mass from the ambient medium. However, winds never completely fill the whole Universe and pristine gas can be found in cosmic voids and regions unaffected by feedback even at z=0. This means that, in principle, there might be the possibility to probe the existence of primordial magnetic fields in such regions.Comment: 14 pages, 5 figures. Accepted for publications by MNRAS. A high resolution version of the paper is available at http://astronomy.sussex.ac.uk/~sb207/Papers/bb.ps.g

    Effects of Various Split Developmental Photophases and Constant Light During Each 24 Hour Period on Adult Morphology in \u3ci\u3eThyanta Calceata\u3c/i\u3e (Hemiptera: Pentatomidae)

    Get PDF
    Rearing immatures of Thyanta calceata in a range of split photophases during each 24 h period and in constant light showed that the adult dimorphic response in color and pu- bescence could be produced; individuals reared in photoperiods in which each scotophase was at least 2 h in length generally developed into the fall/spring morph

    Chromospheric CaII Emission in Nearby F, G, K, and M stars

    Full text link
    We present chromospheric CaII activity measurements, rotation periods and ages for ~1200 F-, G-, K-, and M- type main-sequence stars from ~18,000 archival spectra taken at Keck and Lick Observatories as a part of the California and Carnegie Planet Search Project. We have calibrated our chromospheric S values against the Mount Wilson chromospheric activity data. From these measurements we have calculated median activity levels and derived R'HK, stellar ages, and rotation periods for 1228 stars, ~1000 of which have no previously published S values. We also present precise time series of activity measurements for these stars.Comment: 62 pages, 7 figures, 1 table. Second (extremely long) table is available at http://astro.berkeley.edu/~jtwright/CaIIdata/tab1.tex Accepted by ApJ

    Four-loop results on anomalous dimensions and splitting functions in QCD

    Full text link
    We report on recent progress on the flavour non-singlet splitting functions in perturbative QCD. The~exact four-loop (N^3LO) contribution to these functions has been obtained in the planar limit of a large number of colours. Phenomenologically sufficient approximate expressions have been obtained for the parts not exactly known so far. Both cases include results for the four-loop cusp and virtual anomalous dimensions which are relevant well beyond the evolution of non-singlet quark distributions, for which an accuracy of (well) below 1% has now been been reached.Comment: 11 pages, LaTeX (PoS style), 4 eps-figures. Contribution to the proceedings of `RADCOR 2017', St. Gilgen (Austria), September 201

    Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order

    Full text link
    We report on recent progress on the splitting functions for the evolution of parton distributions and related quantities, the (lightlike) cusp anomalous dimensions, in perturbative QCD. New results are presented for the four-loop (next-to-next-to-next-to-leading order, N^3LO) contributions to the flavour-singlet splitting functions and the gluon cusp anomalous dimension. We present first results, the moments N=2 and N=3, for the five-loop (N^4LO) non-singlet splitting functions.Comment: 10 pages, LaTeX (PoS style), 3 eps-figures. Contribution to the proceedings of `Loops & Legs 2018', St. Goar (Germany), April/May 201

    Three planets around HD 27894. A close-in pair with a 2:1 period ratio and an eccentric Jovian planet at 5.4 AU

    Get PDF
    Aims. Our new program with HARPS aims to detect mean motion resonant planetary systems around stars which were previously reported to have a single bona fide planet, often based only on sparse radial velocity data. Methods. Archival and new HARPS radial velocities for the K2V star HD 27894 were combined and fitted with a three-planet self-consistent dynamical model. The best-fit orbit was tested for long-term stability. Results. We find clear evidence that HD 27894 is hosting at least three massive planets. In addition to the already known Jovian planet with a period PbP_{\rm b} \approx 18 days we discover a Saturn-mass planet with PcP_{\rm c} \approx 36 days, likely in a 2:1 mean motion resonance with the first planet, and a cold massive planet (\approx 5.3 MJupM_{\mathrm{Jup}}) with a period PdP_{\rm d} \approx 5170 days on a moderately eccentric orbit (ede_{\rm d} = 0.39). Conclusions. HD 27894 is hosting a massive, eccentric giant planet orbiting around a tightly packed inner pair of massive planets likely involved in an asymmetric 2:1 mean motion resonance. HD 27894 may be an important milestone for probing planetary formation and evolution scenarios.Comment: 4 pages, 2 tables, 3 figures. Accepted for publication in A&A Letters to the Edito

    Kondo Insulator description of spin state transition in FeSb2

    Full text link
    The thermal expansion and heat capacity of FeSb2 at ambient pressure agrees with a picture of a temperature induced spin state transition within the Fe t_{2g} multiplet. However, high pressure powder diffraction data show no sign of a structural phase transition up to 7GPa. A bulk modulus B=84(3)GPa has been extracted and the temperature dependence of the Gruneisen parameter has been determined. We discuss here the relevance of a Kondo insulator description for this material.Comment: Physical Review B in press (2005

    Galaxy Interactions in Compact Groups II: abundance and kinematic anomalies in HCG 91c

    Get PDF
    Galaxies in Hickson Compact Group 91 (HCG 91) were observed with the WiFeS integral field spectrograph as part of our ongoing campaign targeting the ionized gas physics and kinematics inside star forming members of compact groups. Here, we report the discovery of HII regions with abundance and kinematic offsets in the otherwise unremarkable star forming spiral HCG 91c. The optical emission line analysis of this galaxy reveals that at least three HII regions harbor an oxygen abundance ~0.15 dex lower than expected from their immediate surroundings and from the abundance gradient present in the inner regions of HCG 91c. The same star forming regions are also associated with a small kinematic offset in the form of a lag of 5-10 km/s with respect to the local circular rotation of the gas. HI observations of HCG 91 from the Very Large Array and broadband optical images from Pan-STARRS suggest that HCG 91c is caught early in its interaction with the other members of HCG 91. We discuss different scenarios to explain the origin of the peculiar star forming regions detected with WiFeS, and show that evidence point towards infalling and collapsing extra-planar gas clouds at the disk-halo interface, possibly as a consequence of long-range gravitational perturbations of HCG 91c from the other group members. As such, HCG 91c provides evidence that some of the perturbations possibly associated with the early phase of galaxy evolution in compact groups impact the star forming disk locally, and on sub-kpc scales.Comment: 25 pages, 21 figures, MNRAS accepted. Until publication of the article, the interactive component of Figure 4 is available at this URL: http://www.mso.anu.edu.au/~fvogt/website/misc.htm
    corecore