1,297 research outputs found

    Chromospheric CaII Emission in Nearby F, G, K, and M stars

    Full text link
    We present chromospheric CaII activity measurements, rotation periods and ages for ~1200 F-, G-, K-, and M- type main-sequence stars from ~18,000 archival spectra taken at Keck and Lick Observatories as a part of the California and Carnegie Planet Search Project. We have calibrated our chromospheric S values against the Mount Wilson chromospheric activity data. From these measurements we have calculated median activity levels and derived R'HK, stellar ages, and rotation periods for 1228 stars, ~1000 of which have no previously published S values. We also present precise time series of activity measurements for these stars.Comment: 62 pages, 7 figures, 1 table. Second (extremely long) table is available at http://astro.berkeley.edu/~jtwright/CaIIdata/tab1.tex Accepted by ApJ

    The Lick-Carnegie Exoplanet Survey: A Saturn-Mass Planet in the Habitable Zone of the Nearby M4V Star HIP 57050

    Get PDF
    Precision radial velocities from Keck/HIRES reveal a Saturn-mass planet orbiting the nearby M4V star HIP 57050. The planet has a minimum mass of 0.3 Jupiter-mass, an orbital period of 41.4 days, and an orbital eccentricity of 0.31. V-band photometry reveals a clear stellar rotation signature of the host star with a period of 98 days, well separated from the period of the radial velocity variations and reinforcing a Keplerian origin for the observed velocity variations. The orbital period of this planet corresponds to an orbit in the habitable zone of HIP 57050, with an expected planetary temperature of approximately 230 K. The star has a metallicity of [Fe/H] = 0.32+/-0.06 dex, of order twice solar and among the highest metallicity stars in the immediate solar neighborhood. This newly discovered planet provides further support that the well-known planet-metallicity correlation for F, G, and K stars also extends down into the M-dwarf regime. The a priori geometric probability for transits of this planet is only about 1%. However, the expected eclipse depth is ~7%, considerably larger than that yet observed for any transiting planet. Though long on the odds, such a transit is worth pursuing as it would allow for high quality studies of the atmosphere via transmission spectroscopy with HST. At the expected planetary effective temperature, the atmosphere may contain water clouds.Comment: 20 pages, 5 figures, 3 tables, to appear in the May 20 issue of ApJ

    The Lick-Carnegie Survey: A New Two-Planet System Around the Star HD 207832

    Full text link
    Keck/HIRES precision radial velocities of HD 207832 indicate the presence of two Jovian-type planetary companions in Keplerian orbits around this G star. The planets have minimum masses of 0.56 and 0.73 Jupiter-masses with orbital periods of ~162 and ~1156 days, and eccentricities of 0.13 and 0.27, respectively. Stromgren b and y photometry reveals a clear stellar rotation signature of the host star with a period of 17.8 days, well separated from the period of the radial velocity variations, reinforcing their Keplerian origin. The values of the semimajor axes of the planets suggest that these objects have migrated from the region of giant planet formation to closer orbits. In order to examine the possibility of the existence of additional (small) planets in the system, we studied the orbital stability of hypothetical terrestrial-sized objects in the region between the two planets and interior to the orbit of the inner body. Results indicated that stable orbits exist only in a small region interior to planet b. However, the current observational data offer no evidence for the existence of additional objects in this system.Comment: 23 pages, 4 figures, 5 tables, accepted for publication in Ap

    Sub-Saturn Planet Candidates to HD 16141 and HD 46375

    Get PDF
    Precision Doppler measurements from the Keck/HIRES spectrometer reveal periodic Keplerian velocity variations in the stars HD 16141 and HD 46375. HD 16141 (G5 IV) has a period of 75.8 d and a velocity amplitude of 11 m/s, yielding a companion having Msini = 0.22 Mjup and a semimajor axis, a = 0.35 AU. HD 46375 (K1 IV/V) has a period of 3.024 d and a velocity amplitude of 35 m/s, yielding a companion with Msini=0.25 Mjup, a semimajor axis of a = 0.041 AU, and an eccentricity of 0.04 (consistent with zero). These companions contribute to the rising planet mass function toward lower masses.Comment: 4 Figure

    A Planetary Companion to the Nearby M4 Dwarf, Gliese 876

    Get PDF
    Doppler measurements of the M4 dwarf star, Gliese 876, taken at both Lick and Keck Observatory reveal periodic, Keplerian velocity variations with a period of 61 days. The orbital fit implies that the companion has a mass of, M = 2.1 MJUP /sin i, an orbital eccentricity of, e = 0.27+-0.03, and a semimajor axis of, a = 0.21 AU. The planet is the first found around an M dwarf, and was drawn from a survey of 24 such stars at Lick Observatory. It is the closest extrasolar planet yet found, providing opportunities for follow--up detection. The presence of a giant planet on a non-circular orbit, 0.2 AU from a 1/3 M_Sun star, presents a challenge to planet formation theory. This planet detection around an M dwarf suggests that giant planets are numerous in the Galaxy.Comment: 13 pages, 3 Figure

    On the 2:1 Orbital Resonance in the HD 82943 Planetary System

    Full text link
    We present an analysis of the HD 82943 planetary system based on a radial velocity data set that combines new measurements obtained with the Keck telescope and the CORALIE measurements published in graphical form. We examine simultaneously the goodness of fit and the dynamical properties of the best-fit double-Keplerian model as a function of the poorly constrained eccentricity and argument of periapse of the outer planet's orbit. The fit with the minimum chi_{nu}^2 is dynamically unstable if the orbits are assumed to be coplanar. However, the minimum is relatively shallow, and there is a wide range of fits outside the minimum with reasonable chi_{nu}^2. For an assumed coplanar inclination i = 30 deg. (sin i = 0.5), only good fits with both of the lowest order, eccentricity-type mean-motion resonance variables at the 2:1 commensurability, theta_1 and theta_2, librating about 0 deg. are stable. For sin i = 1, there are also some good fits with only theta_1 (involving the inner planet's periapse longitude) librating that are stable for at least 10^8 years. The libration semiamplitudes are about 6 deg. for theta_1 and 10 deg. for theta_2 for the stable good fit with the smallest libration amplitudes of both theta_1 and theta_2. We do not find any good fits that are non-resonant and stable. Thus the two planets in the HD 82943 system are almost certainly in 2:1 mean-motion resonance, with at least theta_1 librating, and the observations may even be consistent with small-amplitude librations of both theta_1 and theta_2.Comment: 24 pages, including 10 figures; accepted for publication in Ap

    A 4-Planet System Orbiting the K0V Star HD 141399

    Get PDF
    We present precision radial velocity (RV) data sets from Keck-HIRES and from Lick Observatory's new Automated Planet Finder Telescope and Levy Spectrometer on Mt. Hamilton that reveal a multiple-planet system orbiting the nearby, slightly evolved, K-type star HD 141399. Our 91 observations over 10.5 years suggest the presence of four planets with orbital periods of 94.35, 202.08, 1070.35, and 3717.35 days and minimum masses of 0.46, 1.36, 1.22, and 0.69 Jupiter masses respectively. The orbital eccentricities of the three inner planets are small, and the phase curves are well sampled. The inner two planets lie just outside the 2:1 resonance, suggesting that the system may have experienced dissipative evolution during the protoplanetary disk phase. The fourth companion is a Jupiter-like planet with a Jupiter-like orbital period. Its orbital eccentricity is consistent with zero, but more data will be required for an accurate eccentricity determination.Comment: 11 pages, 13 figures, To appear in the Astrophysical Journa
    • …
    corecore