43 research outputs found

    Understanding biomolecular motion, recognition, and allostery by use of conformational ensembles

    Get PDF
    We review the role conformational ensembles can play in the analysis of biomolecular dynamics, molecular recognition, and allostery. We introduce currently available methods for generating ensembles of biomolecules and illustrate their application with relevant examples from the literature. We show how, for binding, conformational ensembles provide a way of distinguishing the competing models of induced fit and conformational selection. For allostery we review the classic models and show how conformational ensembles can play a role in unravelling the intricate pathways of communication that enable allostery to occur. Finally, we discuss the limitations of conformational ensembles and highlight some potential applications for the future

    Rhizobial Nodulation Factors Stimulate Mycorrhizal Colonization of Nodulating and Nonnodulating Soybeans.

    No full text
    Legumes form tripartite symbiotic associations with noduleinducing rhizobia and vesicular-arbuscular mycorrhizal fungi. Co-inoculation of soybean (Glycine max [L.] Merr.) roots with Bradyrhizobium japonicum 61-A-101 considerably enhanced colonization by the mycorrhizal fungus Glomus mosseae. A similar stimulatory effect on mycorrhizal colonization was also observed in nonnodulating soybean mutants when inoculated with Bradyrhizobium japonicum and in wild-type soybean plants when inoculated with ineffective rhizobial strains, indicating that a functional rhizobial symbiosis is not necessary for enhanced mycorrhiza formation. Inoculation with the mutant Rhizobium sp. NGR[delta]nodABC, unable to produce nodulation (Nod) factors, did not show any effect on mycorrhiza. Highly purified Nod factors also increased the degree of mycorrhizal colonization. Nod factors from Rhizobium sp. NGR234 differed in their potential to promote fungal colonization. The acetylated factor NodNGR-V (MeFuc, Ac), added at concentrations as low as 10-9 M, was active, whereas the sulfated factor, NodNGR-V (MeFuc, S), was inactive. Several soybean flavonoids known to accumulate in response to the acetylated Nod factor showed a similar promoting effect on mycorrhiza. These results suggest that plant flavonoids mediate the Nod factor-induced stimulation of mycorrhizal colonization in soybean roots

    The uptake and partitioning of cadmium in two cultivars of potato (Solanum tuberosum L.)

    No full text
    Copyright © 2003 Oxford University PressThe uptake and distribution of Cd in potatoes over the course of a growing season was investigated in two cultivars of potatoes that differed in tuber Cd concentration. Plants were grown in soil with supplemental Cd. The concentrations of Cd in different tissues varied greatly in the order roots>shoots>> tubers. After the initiation of tuber bulking, shoot growth ceased and the increase in total plant Cd was mostly due to accumulation in the tubers. The constancy of the Cd concentration in shoots suggested that import of Cd via the xylem must be matched by export in the phloem, which implied that Cd must have significant phloem mobility. It was found that the differences in tuber Cd between cultivars Wilwash and Kennebec were not due to differences in total uptake or growth, but to differences in Cd partitioning within the plant. This partitioning was specific to Cd and was not observed for a range of nutrient elements. Most of the differences in tuber Cd concentration between the cultivars could be accounted for by a 3-fold higher retention of Cd in the roots of cv. Wilwash. The involvement of root sequestration, and xylem and phloem pathways in the loading of Cd into tubers is considered.K. R. Dunbar, M. J. McLaughlin, and R. J. Rei

    Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens.

    No full text
    Cadmium (Cd) is a widespread, naturally occurring element present in soil, rock, water, plants and animals. Cd is a non-essential element for plants and is toxic at higher concentrations. Transcript profiles of roots of Arabidopsis thaliana (Arabidopsis) and Thlaspi caerulescens plants exposed to Cd and zinc (Zn) are examined, with the main aim to determine the differences in gene expression between the Cd-tolerant Zn-hyperaccumulator T. caerulescens and the Cd-sensitive non-accumulator Arabidopsis. This comparative transcriptional analysis emphasized the role of genes involved in lignin, glutathione and sulphate metabolism. Furthermore the transcription factors MYB72 and bHLH100 were studied for their involvement in metal homeostasis, as they showed an altered expression after exposure to Cd. The Arabidopsis myb72 knockout mutant was more sensitive to excess Zn or iron (Fe) deficiency than wild type, while Arabidopsis transformants overexpressing bHLH100 showed increased tolerance to high Zn and nickel (Ni) compared to wild-type plants, confirming their role in metal homeostasis in Arabidopsi
    corecore