12,384 research outputs found

    Seed conservation in ex situ genebanks - genetic studies on longevity in barley

    Get PDF
    Recognizing the danger due to a permanent risk of loss of the genetic variability of cultivated plants and their wild relatives in response to changing environmental conditions and cultural practices, plant ex situ genebank collections were created since the beginning of the last century. World-wide more than 6 million accessions have been accumulated of which more than 90% are stored as seeds. Research on seed longevity was performed in barley maintained for up to 34 years in the seed store of the German ex situ genebank of the Leibniz-Institute of Plant Genetics and Crop Plant Research in Gatersleben. A high intraspecific variation was detected in those natural aged accessions. In addition three doubled haploid barley mapping populations being artificial aged were investigated to study the inheritance of seed longevity. Quantitative trait locus (QTL) mapping was based on a transcript map. Major QTLs were identified on chromosomes 2H, 5H (two) and 7H explaining a phenotypic variation of up to 54%. A sequence homology search was performed to derive the putative function of the genes linked to the QTLs

    How ripples turn into dots: modeling ion-beam erosion under oblique incidence

    Full text link
    Pattern formation on semiconductor surfaces induced by low energetic ion-beam erosion under normal and oblique incidence is theoretically investigated using a continuum model in form of a stochastic, nonlocal, anisotropic Kuramoto-Sivashinsky equation. Depending on the size of the parameters this model exhibits hexagonally ordered dot, ripple, less regular and even rather smooth patterns. We investigate the transitional behavior between such states and suggest how transitions can be experimentally detected.Comment: 11 pages, 4 figures, submitted for publication, revised versio

    Moments of nonclassicality quasiprobabilities

    Full text link
    A method is introduced for the verification of nonclassicality in terms of moments of nonclassicality quasiprobability distributions. The latter are easily obtained from experimental data and will be denoted as nonclassicality moments. Their relation to normally-ordered moments is derived, which enables us to verify nonclassicality by using well established criteria. Alternatively, nonclassicality criteria are directly formulated in terms of nonclassicality moments. The latter converge in proper limits to the usually used criteria, as is illustrated for squeezing and sub-Poissonian photon statistics. Our theory also yields expectation values of any observable in terms of nonclassicality moments.Comment: 6 pages, 3 figure

    Waveguide QED: Many-Body Bound State Effects on Coherent and Fock State Scattering from a Two-Level System

    Get PDF
    Strong coupling between a two-level system (TLS) and bosonic modes produces dramatic quantum optics effects. We consider a one-dimensional continuum of bosons coupled to a single localized TLS, a system which may be realized in a variety of plasmonic, photonic, or electronic contexts. We present the exact many-body scattering eigenstate obtained by imposing open boundary conditions. Multi-photon bound states appear in the scattering of two or more photons due to the coupling between the photons and the TLS. Such bound states are shown to have a large effect on scattering of both Fock and coherent state wavepackets, especially in the intermediate coupling strength regime. We compare the statistics of the transmitted light with a coherent state having the same mean photon number: as the interaction strength increases, the one-photon probability is suppressed rapidly, and the two- and three-photon probabilities are greatly enhanced due to the many-body bound states. This results in non-Poissonian light.Comment: 10 page

    On a theory of neutrino oscillations with entanglement

    Get PDF
    We show that, despite appearances, a theoretical approach to neutrino oscillation in which the neutrino and its interaction partners are entangled yields the standard result for the neutrino oscillation wavelength. We also shed some light on the question of why plane-wave approaches to the neutrino oscillation problem can yield the correct oscillation wavelength even though they do not explicitly account for the localization of the neutrino source and the detector.Comment: RevTeX 4, 12 pages, 1 figure; v2: Minor clarifications, references adde

    Multipartite minimum uncertainty products

    Full text link
    In our previous work we have found a lower bound for the multipartite uncertainty product of the position and momentum observables over all separable states. In this work we are trying to minimize this uncertainty product over a broader class of states to find the fundamental limits imposed by nature on the observable quantites. We show that it is necessary to consider pure states only and find the infimum of the uncertainty product over a special class of pure states (states with spherically symmetric wave functions). It is shown that this infimum is not attained. We also explicitly construct a parametrized family of states that approaches the infimum by varying the parameter. Since the constructed states beat the lower bound for separable states, they are entangled. We thus show that there is a gap that separates the values of a simple measurable quantity for separable states from entangled ones and we also try to find the size of this gap.Comment: 18 pages, 5 figure

    Strongly correlated photons generated by coupling a three- or four-level system to a waveguide

    Full text link
    We study the generation of strongly correlated photons by coupling an atom to photonic quantum fields in a one-dimensional waveguide. Specifically, we consider a three-level or four-level system for the atom. Photon-photon bound states emerge as a manifestation of the strong photon-photon correlation mediated by the atom. Effective repulsive or attractive interaction between photons can be produced, causing either suppressed multiphoton transmission (photon blockade) or enhanced multiphoton transmission (photon-induced tunneling). As a result, nonclassical light sources can be generated on demand by sending coherent states into the proposed system. We calculate the second-order correlation function of the transmitted field and observe bunching and antibunching caused by the bound states. Furthermore, we demonstrate that the proposed system can produce photon pairs with a high degree of spectral entanglement, which have a large capacity for carrying information and are important for large-alphabet quantum communication.Comment: 13+ pages, 7 figure

    Illumination in symbiotic binary stars: Non-LTE photoionization models. II. Wind case

    Get PDF
    We describe a non-LTE photoionization code to calculate the wind structure and emergent spectrum of a red giant wind illuminated by the hot component of a symbiotic binary system. We consider spherically symmetric winds with several different velocity and temperature laws and derive predicted line fluxes as a function of the red giant mass loss rate, \mdot. Our models generally match observations of the symbiotic stars EG And and AG Peg for \mdot about 10^{-8} \msunyr to 10^{-7} \msunyr. The optically thick cross- section of the red giant wind as viewed from the hot component is a crucial parameter in these models. Winds with cross-sections of 2--3 red giant radii reproduce the observed fluxes, because the wind density is then high, about 10^9 cm^{-3}. Our models favor winds with acceleration regions that either lie far from the red giant photosphere or extend for 2--3 red giant radii.Comment: 51 pages, LaTeX including three tables, requires 15 Encapsulated Postscript figures, to appear in Ap

    Dynamical control of two-level system's decay and long time freezing

    Full text link
    We investigate with exact numerical calculation coherent control of a two-level quantum system's decay by subjecting the two-level system to many periodic ideal 2Ï€2\pi phase modulation pulses. For three spectrum intensities (Gaussian, Lorentzian, and exponential), we find both suppression and acceleration of the decay of the two-level system, depending on difference between the spectrum peak position and the eigen frequency of the two-level system. Most interestingly, the decay of the two-level system freezes after many control pulses if the pulse delay is short. The decay freezing value is half of the decay in the first pulse delay.Comment: 6 pages, 6 figures, published in Phys. Rev.

    Homodyne detection for measuring internal quantum correlations of optical pulses

    Full text link
    A new method is described for determining the quantum correlations at different times in optical pulses by using balanced homodyne detection. The signal pulse and sequences of ultrashort test pulses are superimposed, where for chosen distances between the test pulses their relative phases and intensities are varied from measurement to measurement. The correlation statistics of the signal pulse is obtained from the time-integrated difference photocurrents measured.Comment: 7 pages, A4.sty include
    • …
    corecore