22,560 research outputs found

    High electrical resistivity carbon/graphite fibers

    Get PDF
    Carbon/graphite fibers were chemically oxidized in the liquid phase to fibers of graphite oxide. Resistivity increases as high as 10,000 times were obtained, the oxidized fiber decomposed on exposure to atmosphere. A factor of 1,000 remained as a stable increment. The largest change observed was 1,000,000 times. Best results were obtained on the most highly graphitized fibers. Electrochemical oxidation yielded a lower increase--about 10 times, but provided a controllable method of synthesis and insight to the mechanism of reaction. Tensile tests indicated that the strength of the fiber on oxidation was decreased by no more than 25 percent

    The VWFA: It\u27s not just for words anymore

    Get PDF
    Reading is an important but phylogenetically new skill. While neuroimaging studies have identified brain regions used in reading, it is unclear to what extent these regions become specialized for use predominantly in reading vs. other tasks. Over the past several years, our group has published three studies addressing this question, particularly focusing on whether the putative visual word form area (VWFA) is used predominantly in reading, or whether it is used more generally in a number of tasks. Our three studies utilize a range of neuroimaging techniques, including task based fMRI experiments, a seed based resting state functional connectivity (RSFC) experiment, and a network based RSFC experiment. Overall, our studies indicate that the VWFA is not used specifically or even predominantly for reading. Rather the VWFA is a general use region that has processing properties making it particularly useful for reading, though it continues to be used in any task that requires its general processing properties. Our network based RSFC analysis extends this finding to other regions typically thought to be used predominantly for reading. Here, we review these findings and describe how the three studies complement each other. Then, we argue that conceptualizing the VWFA as a brain region with specific processing characteristics rather than a brain region devoted to a specific stimulus class, allows us to better explain the activity seen in this region during a variety of tasks. Having this type of conceptualization not only provides a better understanding of the VWFA but also provides a framework for understanding other brain regions, as it affords an explanation of function that is in keeping with the long history of studying the brain in terms of the type of information processing performed (Posner, 1978)

    Numerical recovery of material parameters in Euler-Bernoulli beam models

    Get PDF
    A fully Sinc-Galerkin method for recovering the spatially varying stiffness parameter in fourth-order time-dependence problems with fixed and cantilever boundary conditions is presented. The forward problems are discretized with a sinc basis in both the spatial and temporal domains. This yields an approximation solution which converges exponentially and is valid on the infinite time interval. When the forward methods are applied to parameter recovery problems, the resulting inverse problems are ill-posed. Tikhonov regularization is applied and the resulting minimization problems are solved via a quasi-Newton/trust region algorithm. The L-curve method is used to determine an appropriate value of the regularization parameter. Numerical results which highlight the method are given for problems with both fixed and cantilever boundary conditions

    Spatially heterogeneous dynamics and dynamic facilitation in a model of viscous silica

    Full text link
    Performing molecular dynamics simulations, we find that the structural relaxation dynamics of viscous silica, the prototype of a strong glass former, are spatially heterogeneous and cannot be understood as a statistical bond breaking process. Further, we show that high particle mobility predominantly propagates continuously through the melt, supporting the concept of dynamic facilitation emphasized in recent theoretical work.Comment: 4 pages, 4 figure

    Multi-focal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles

    Full text link
    Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 times greater than that required in sequential approach. Simultaneous focusing of the laser in multiple spots along the line of intended cut can extend this ratio to 1.7. Counter-propagating jets forming during collapse of two bubbles in materials with low viscosity can further extend the cutting zone - up to a factor of 1.54.Comment: 16 pages, 8 figures. Paper is accepted for publication in Physical Review

    Simulations of closed-loop wavefront reconstruction for multiconjugate adaptive optics on giant telescopes

    Get PDF
    The multi-conjugate adaptive optics (MCAO) systems proposed for future giant telescopes will require new, computationally efficient, concepts for wavefront reconstruction due to their very large number of deformable mirror (DM) actuators and wavefront sensor (WFS) measurements. Preliminary versions of such reconstruction algorithms have recently been developed, and simulations of MCAO systems with 9000 or more DM actuators and 33000 or more WFS measurements are now possible using a single desktop computer. However, the results obtained to date are limited to the case of open-loop wavefront reconstruction, and more work is needed to develop computationally efficient reconstructors for the more realistic case of a closed-loop MCAO system that iteratively measures and corrects time-varying wavefront distortions. In this paper, we describe and investigate two reconstruction concepts for this application. The first approach assumes that knowledge of the DM actuator command vector and the DM-to-WFS influence matrix may be used to convert a closed-loop WFS measurement into an accurate estimate of the corresponding open-loop measurement, so that a standard open-loop wavefront reconstructor may be applied. The second approach is a very coarse (but computationally efficient) approximation to computing the minimum variance wavefront reconstructor for the residual wavefront errors in a closed-loop AO system. Sample simulation results are presented for both concepts with natural guide star (NGS) AO and laser guide star (LGS) MCAO systems on 8- and 32-meter class telescopes. The first approach yields a stable control loop with closed-loop performance comparable to the open-loop estimation accuracy of the classical minimum variance reconstructor. The second approach is unstable when implemented in a type I servo system

    The Ising M-p-spin mean-field model for the structural glass: continuous vs. discontinuous transition

    Full text link
    The critical behavior of a family of fully connected mean-field models with quenched disorder, the MpM-p Ising spin glass, is analyzed, displaying a crossover between a continuous and a random first order phase transition as a control parameter is tuned. Due to its microscopic properties the model is straightforwardly extendable to finite dimensions in any geometry.Comment: 10 pages, 1 figure, 1 tabl

    Computationally efficient wavefront reconstructor for simulation of multiconjugate adaptive optics on giant telescopes

    Get PDF
    Multi-conjugate adaptive optical (MCAO) systems with from 10,000 to 100,000 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront reconstruction algorithms for these systems is impractical, since the number of calculations required to compute (apply) the reconstruction matrix scales as the cube (square) of the number of AO degrees of freedom. Significant improvements in computational efficiency are possible by exploiting the sparse and/or periodic structure of the deformable mirror influence matrices and the atmospheric turbulence covariance matrices appearing in these calculations. In this paper, we review recent progress in developing an iterative sparse matrix implementation of minimum variance wavefront reconstruction for MCAO. The basic method is preconditioned conjugate gradients, using a multigrid preconditioner incorporating a layer-oriented, iterative smoothing operator. We outline the key elements of this approach, including special considerations for laser guide star (LGS) MCAO systems with tilt-removed LGS wavefront measurements and auxiliary full aperture tip/tilt measurements from natural guide stars. Performance predictions for sample natural guide star (NGS) and LGS MCAO systems on 8 and 16 meter class telescopes are also presented

    Layer-oriented multigrid wavefront reconstruction algorithms for multiconjugate adaptive optics

    Get PDF
    Multi-conjugate adaptive optics (MCAO) systems with 10^4-10^5 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence

    On the structure of the sets of mutually unbiased bases for N qubits

    Full text link
    For a system of N qubits, spanning a Hilbert space of dimension d=2^N, it is known that there exists d+1 mutually unbiased bases. Different construction algorithms exist, and it is remarkable that different methods lead to sets of bases with different properties as far as separability is concerned. Here we derive the four sets of nine bases for three qubits, and show how they are unitarily related. We also briefly discuss the four-qubit case, give the entanglement structure of sixteen sets of bases,and show some of them, and their interrelations, as examples. The extension of the method to the general case of N qubits is outlined.Comment: 16 pages, 10 tables, 1 figur
    corecore