21,449 research outputs found

    A parameterisation of the soot aging for global climate models

    No full text
    International audienceThe representation of soot in global climate models is desirable since it contributes to both the direct and indirect climate effect. While freshly emitted soot is initially hydrophobic and externally mixed, it can be transferred into an internal mixture by coagulation, condensation or photochemical processes. These aging processes affect the hygroscopic qualities and hence the growth behaviour, the optical properties and eventually the lifetime of the soot particles. However, due to computational limits the aging of soot in global climate models is often only parameterised by an estimated turnover rate resulting in a lifetime of soot of several days. Based on the results of our simulations with a comprehensive mesoscale model, we derive the timescale on which diesel soot is transferred from an external to internal mixture, and propose a parameterisation for the use in global climate models. This parameterisation is applicable to continental conditions in industrialised areas as can be found in Central Europe and North America. For daytime conditions, away from the sources, condensation is dominant and the aging process occurs very fast with a timescale of ?=2 h. During night time condensation is not effective. Then coagulation is the most important aging process and our parameterisation leads to a timescale between 10 h and 40 h

    Soot aging time scales in polluted regions during day and night

    Get PDF
    The aging of soot is one of the key uncertainties in the estimation of both the direct and indirect climate effect. While freshly emitted soot is initially hydrophobic and externally mixed, it can be transferred into an internal mixture by coagulation, condensation or photochemical processes. These aging processes affect the hygroscopic qualities and hence the growth behaviour, the optical properties and eventually the lifetime of the soot particles. However, due to computational limits the aging of soot in global climate models is often only parameterised by an estimated turnover rate resulting in a lifetime of soot of several days. Hence, the aging process of soot is one of the key uncertainties governing the burden and effect of black carbon. In this study, we discuss the time scale on which diesel soot is transferred from an external to an internal mixture based on the results of our simulations with a comprehensive mesoscale model. For daytime conditions during summer condensation of sulphuric acid is dominant and the aging process occurs on a time scale of τ =8h close to the sources and τ =2h above the source region. During winter comparable time scales are found but ammonium nitrate becomes more important. During night time condensation is not effective. Then coagulation is the most important aging process and our results show time scales between 10h and 40h

    The last glacial-interglacial cycle in Lake Ohrid (Macedonia/Albania): testing diatom response to climate

    Get PDF
    Lake Ohrid is a site of global importance for palaeoclimate research. This study presents results of diatom analysis of a ca. 136 ka sequence, Co1202, from the northeast of the lake basin. It offers the opportunity to test diatom response across two glacial-interglacial transitions and within the Last Glacial, while setting up taxonomic protocols for future research. The results are outstanding in demonstrating the sensitivity of diatoms to climate change, providing proxy evidence for temperature change marked by glacial-interglacial shifts between the dominant planktonic taxa, Cyclotella fottii and C. ocellata, and exact correlation with geochemical proxies to mark the start of the Last Interglacial at ca. 130 ka. Importantly, diatoms show much stronger evidence in this site for warming during MIS3 than recorded in other productivity-related proxies, peaking at ca. 39 ka, prior to the extreme conditions of the Last Glacial maximum. In the light of the observed patterns, and from the results of analysis of early Holocene sediments from a second core, Lz1120, the lack of a response to Late Glacial and early Holocene warming from ca. 15-7.4 ka suggests the Co1202 sequence may be compromised during this phase. After ca. 7.4 ka, there is evidence for enhanced nutrient enrichment compared to the Last Interglacial, following by a post-Medieval cooling trend. Taxonomically, morphological variability in C. fottii shows no clear trends linked to climate, but an intriguing change in central area morphology occurs after ca. 48.7 ka, coincident with a tephra layer. In contrast, C. ocellata shows morphological variation in the number of ocelli between interglacials, suggesting climatically-forced variation or evolutionary selection pressure. The application of a simple dissolution index does not track preservation quality very effectively, underlining the importance of diatom concentration data in future studies

    Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model

    Get PDF
    We have extended the coupled mesoscale atmosphere and chemistry model COSMO-ART to account for the transformation of aerosol particles into cloud condensation nuclei and to quantify their interaction with warm cloud microphysics on the regional scale. The new model system aims to fill the gap between cloud resolving models and global scale models. It represents the very complex microscale aerosol and cloud physics as detailed as possible, whereas the continental domain size and efficient codes will allow for both studying weather and regional climate. The model system is applied in a first extended case study for Europe for a cloudy five day period in August 2005. <br><br> The model results show that the mean cloud droplet number concentration of clouds is correlated with the structure of the terrain, and we present a terrain slope parameter TS to classify this dependency. We propose to use this relationship to parameterize the probability density function, PDF, of subgrid-scale cloud updraft velocity in the activation parameterizations of climate models. <br><br> The simulations show that the presence of cloud condensation nuclei (CCN) and clouds are closely related spatially. We find high aerosol and CCN number concentrations in the vicinity of clouds at high altitudes. The nucleation of secondary particles is enhanced above the clouds. This is caused by an efficient formation of gaseous aerosol precursors above the cloud due to more available radiation, transport of gases in clean air above the cloud, and humid conditions. Therefore the treatment of complex photochemistry is crucial in atmospheric models to simulate the distribution of CCN. <br><br> The mean cloud droplet number concentration and droplet diameter showed a close link to the change in the aerosol. To quantify the net impact of an aerosol change on the precipitation we calculated the precipitation susceptibility <i>β</i> for the whole model domain over a period of two days with an hourly resolution. The distribution function of <i>β</i> is slightly skewed to positive values and has a mean of 0.23. Clouds with a liquid water path LWP of approximately 0.85 kg m<sup>−2</sup> are on average most susceptible to aerosol changes in our simulations with an absolute value of <i>β</i> of 1. The average <i>β</i> for LWP between 0.5 kg m<sup>−2</sup> and 1 kg m<sup>−2</sup> is approximately 0.4

    Cavity-assisted spontaneous emission as a single-photon source: Pulse shape and efficiency of one-photon Fock state preparation

    Full text link
    Within the framework of exact quantum electrodynamics in dispersing and absorbing media, we have studied the quantum state of the radiation emitted from an initially in the upper state prepared two-level atom in a high-QQ cavity, including the regime where the emitted photon belongs to a wave packet that simultaneously covers the areas inside and outside the cavity. For both continuing atom--field interaction and short-term atom--field interaction, we have determined the spatio-temporal shape of the excited outgoing wave packet and calculated the efficiency of the wave packet to carry a one-photon Fock state. Furthermore, we have made contact with quantum noise theories where the intracavity field and the field outside the cavity are regarded as approximately representing independent degrees of freedom such that two separate Hilbert spaces can be introduced.Comment: 16 pages, 7 eps figures; improved version as submitted to Phys. Rev.

    A multi-centennial record of past floods and earthquakes in Valle d'Aosta, Mediterranean Italian Alps

    Get PDF
    Mediterranean Alpine populations are particularly exposed to natural hazards like floods and earthquakes because of both the close Mediterranean humidity source and the seismically active Alpine region. Knowledge of long-term variability in flood and earthquake occurrences is of high value since it can be useful to improve risk assessment and mitigation. In this context, we explore the potential of a lake-sediment sequence from Lago Inferiore de Laures in Valle d'Aosta (Northern Italy) as a long-term record of past floods and earthquakes. The high-resolution sedimentological study revealed 76 event layers over the last ca. 270 years; 8 are interpreted as most probably induced by earthquakes and 68 by flood events. Comparison to historical seismic data suggests that the recorded earthquakes are strong (epicentral Medvedev–Sponheuer–Kárník (MSK) intensity of VI–IX) and/or close to the lake (distance of 25–120 km). Compared to other lake-sediment sequences, Lago Inferiore de Laures sediments appear to be regionally the most sensitive to earthquake shaking, offering a great potential to reconstruct the past regional seismicity further back in time. Comparison to historical and palaeoflood records suggests that the flood signal reconstructed from Lago Inferiore de Laures sediments represents the regional and (multi-)decadal variability of summer–autumn floods well, in connection to Mediterranean mesoscale precipitation events. Overall, our results reveal the high potential of Lago Inferiore de Laures sediments to extend the regional earthquake and flood catalogues far back in time
    • …
    corecore