24,091 research outputs found

    Propagation considerations in land mobile satellite transmission

    Get PDF
    It appears likely that the Land Mobile Satellite Services (LMSS) will be authorized by the FCC for operation in the 800 to 900 MHz (UHF) and possibly near 1500 MHz (L-band). Propagation problems are clearly an important factor in the effectiveness of this service, but useful measurements are few, and produced contradictory interpretations. A first order overview of existing measurements is presented with particular attention to the first two NASA balloon to mobile vehicle propagation experiments. Some physical insight into the interpretation of propagation effects in LMSS transmissions is provided

    Quasielastic neutrino scattering from oxygen and the atmospheric neutrino problem

    Get PDF
    We examine several phenomena beyond the scope of Fermi-gas models that affect the quasielastic scattering (from oxygen) of neutrinos in the 0.1 -- 3.0 GeV range. These include Coulomb interactions of outgoing protons and leptons, a realistic finite-volume mean field, and the residual nucleon-nucleon interaction. None of these effects are accurately represented in the Monte Carlo simulations used to predict event rates due to ÎĽ\mu and ee neutrinos from cosmic-ray collisions in the atmosphere. We nevertheless conclude that the neglected physics cannot account for the anomalous ÎĽ\mu to ee ratio observed at Kamiokande and IMB, and is unlikely to change absolute event rates by more than 10--15\%. We briefly mention other phenomena, still to be investigated in detail, that may produce larger changes.Comment: In Revtex version 2. 14 pages, 3 figures (available on request from J. Engel, tel. 302-831-4354, [email protected]

    Verifying continuous-variable entanglement in finite spaces

    Full text link
    Starting from arbitrary Hilbert spaces, we reduce the problem to verify entanglement of any bipartite quantum state to finite dimensional subspaces. Hence, entanglement is a finite dimensional property. A generalization for multipartite quantum states is also given.Comment: 4 page

    Raman-assisted Rabi resonances in two-mode cavity QED

    Full text link
    The dynamics of a vibronic system in a lossy two-mode cavity is studied, with the first mode being resonant to the electronic transition and the second one being nearly resonant due to Raman transitions. We derive analytical solutions for the dynamics of this system. For a properly chosen detuning of the second mode from the exact Raman resonance, we obtain conditions that are closely related to the phenomenon of Rabi resonance as it is well known in laser physics. Such resonances can be observed in the spontaneous emission spectra, where the spectrum of the second mode in the case of weak Raman coupling is enhanced substantially.Comment: 6 pages, 5 figure

    Uncertainties in nuclear transition matrix elements for neutrinoless ββ\beta \beta decay II: the heavy Majorana neutrino mass mechanism

    Full text link
    Employing four different parametrization of the pairing plus multipolar type of effective two-body interaction and three different parametrizations of Jastrow-type of short range correlations, the uncertainties in the nuclear transition matrix elements MN(0ν)M_{N}^{(0\nu)} due to the exchange of heavy Majorana neutrino for the 0+→0+0^{+}\rightarrow 0^{+} transition of neutrinoless double beta decay of 94^{94}Zr, 96^{96}Zr, 98^{98}Mo, 100^{100}Mo, 104^{104}Ru, 110^{110}Pd, 128,130^{128,130}Te and 150^{150}Nd isotopes in the PHFB model are estimated to be around 25%. Excluding the nuclear transition matrix elements calculated with Miller-Spenser parametrization of Jastrow short range correlations, the uncertainties are found to be 10%-15% smaller

    How Sensitive are Di-Leptons from Rho Mesons to the High Baryon Density Region?

    Full text link
    We show that the measurement of di-leptons might provide only a restricted view into the most dense stages of heavy ion reactions. Thus, possible studies of meson and baryon properties at high baryon densities, as e.g. done at GSI-HADES and envisioned for FAIR-CBM, might observe weaker effects than currently expected in certain approaches. We argue that the strong absorption of resonances in the high baryon density region of the heavy ion collision masks information from the early hot and dense phase due to a strong increase of the total decay width because of collisional broadening. To obtain additional information, we also compare the currently used approaches to extract di-leptons from transport simulations - i.e. shining, only vector mesons from final baryon resonance decays and instant emission of di-leptons and find a strong sensitivity on the method employed in particular at FAIR and SPS energies. It is shown explicitly that a restriction to rho meson (and therefore di-lepton) production only in final state baryon resonance decays provide a strong bias towards rather low baryon densities. The results presented are obtained from UrQMD v2.3 calculations using the standard set-up.Comment: 8 pages, 6 figures, expanded versio

    Evolution of the potential-energy surface of amorphous silicon

    Full text link
    The link between the energy surface of bulk systems and their dynamical properties is generally difficult to establish. Using the activation-relaxation technique (ART nouveau), we follow the change in the barrier distribution of a model of amorphous silicon as a function of the degree of relaxation. We find that while the barrier-height distribution, calculated from the initial minimum, is a unique function that depends only on the level of distribution, the reverse-barrier height distribution, calculated from the final state, is independent of the relaxation, following a different function. Moreover, the resulting gained or released energy distribution is a simple convolution of these two distributions indicating that the activation and relaxation parts of a the elementary relaxation mechanism are completely independent. This characterized energy landscape can be used to explain nano-calorimetry measurements.Comment: 5 pages, 4 figure

    Tomographic Characterization of Three-Qubit Pure States with Only Two-Qubit Detectors

    Full text link
    A tomographic process for three-qubit pure states using only pairwise detections is presented.Comment: 3 pages; revtex4; v2: the focus on tomography was emphasized and the experimental procedure detailed; v3: the text was improved in clarity, some mistakes were correcte

    Isovector Pairing in Odd-A Proton-Rich Nuclei

    Get PDF
    A simple model based on the group SO(5) suggests that both the like-particle and neutron-proton components of isovector pairing correlations in odd-A nuclei are Pauli blocked. The same effect emerges from Monte Carlo Shell-model calculations of proton-rich nuclei in the full fp shell. There are small differences between the two models in their representation of the effects of an odd nucleon on the competition between like-particle and neutron-proton pairing, but they can be understood and reduced by using a two-level version of the SO(5) model. On the other hand, in odd-odd nuclei with N not equal to Z SO(5) disagrees more severely with the shell model because it incorrectly predicts ground-state isospins. The shell model calculations for any fp-shell nuclei can be extended to finite temperature, where they show a decrease in blocking
    • …
    corecore