6 research outputs found

    Increased noise levels have different impacts on the anti-predator behaviour of two sympatric fish species.

    Get PDF
    types: Journal ArticleCopyright: © 2014 Voellmy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Animals must avoid predation to survive and reproduce, and there is increasing evidence that man-made (anthropogenic) factors can influence predator-prey relationships. Anthropogenic noise has been shown to have a variety of effects on many species, but work investigating the impact on anti-predator behaviour is rare. In this laboratory study, we examined how additional noise (playback of field recordings of a ship passing through a harbour), compared with control conditions (playback of recordings from the same harbours without ship noise), affected responses to a visual predatory stimulus. We compared the anti-predator behaviour of two sympatric fish species, the three-spined stickleback (Gasterosteus aculeatus) and the European minnow (Phoxinus phoxinus), which share similar feeding and predator ecologies, but differ in their body armour. Effects of additional-noise playbacks differed between species: sticklebacks responded significantly more quickly to the visual predatory stimulus during additional-noise playbacks than during control conditions, while minnows exhibited no significant change in their response latency. Our results suggest that elevated noise levels have the potential to affect anti-predator behaviour of different species in different ways. Future field-based experiments are needed to confirm whether this effect and the interspecific difference exist in relation to real-world noise sources, and to determine survival and population consequences.University of BristolBasler Stiftung für Biologische ForschungDefr

    Overhead view of experimental tank setup.

    No full text
    <p>Schematic representation of visual predatory stimulus (PS), underwater loudspeaker (LS), focal fish position for predator release (X), feeder (F), artificial plant (P), mesh separator (S) and opaque Correx dividers (D).</p

    Speed of response to a visual predatory stimulus.

    No full text
    <p>Minnows showed no significant effect of noise treatment on response latency (A), while sticklebacks responded significantly more quickly during additional-noise playbacks compared to control playbacks (B). Plots of Kaplan-Meier estimate from mixed model Cox proportional hazards regression, with non-responders included as right-censored maximum-latency data. N = two trials to each of 27 minnows and 35 sticklebacks.</p

    Average spectral levels of acoustic conditions in the experimental tank.

    No full text
    <p>Sound pressure levels of averaged power spectra (FFT spectrum level units normalised to 1 Hz bandwidth, Hann window, FFT size 1024, 50% overlap) of recordings during band-pass filtered additional-noise playbacks (0.1 to 3.0 kHz; NT) and control playbacks (AT) at two tank depths (5 cm above tank floor and 5 cm below water surface) at the location the fish had to be for the visual predatory stimulus to be released. For control playbacks, spectral levels from 30 s recordings were assessed and averaged over all playback tracks and the two tank depths; for additional-noise playbacks, spectral levels over the whole duration of single looped elements were taken, to account for power fluctuations within a recording of sound emitted by a moving ship, and averaged over all playback tracks and the two tank depths. Recordings were made with an omni-directional hydrophone with preamplifier (HTI 96-MIN; manufacturer-calibrated sensitivity −164.3 dB re 1 µPa; frequency range 2–30 000 Hz) and a solid-state recorder (Edirol R09HR, Roland Corporation), at a sampling frequency of 44.1 kHz and a sampling rate of 16 bits; recording levels calibrated against a 1 kHz reference tone of known amplitude. An example of original ship-noise (NN) and ambient-noise recording (AN) of a UK harbour are given for comparison.</p
    corecore