665 research outputs found
Millennial-scale deep ocean ventilation and sea-surface variability during the last four glacial cycles : a new assessment for the Northern Hemisphere ice-sheet growth
AGU Fall Meeting, S. Francisco (USA), 19-14 December 2007, Suppl., Abstract PP44B-0
Palaeoclimatic events, dispersal and migratory losses along the Afro-European axis as drivers of biogeographic distribution in Sylvia warblers
<p>Abstract</p> <p>Background</p> <p>The Old World warbler genus <it>Sylvia </it>has been used extensively as a model system in a variety of ecological, genetic, and morphological studies. The genus is comprised of about 25 species, and 70% of these species have distributions at or near the Mediterranean Sea. This distribution pattern suggests a possible role for the Messinian Salinity Crisis (from 5.96-5.33 Ma) as a driving force in lineage diversification. Other species distributions suggest that Late Miocene to Pliocene Afro-tropical forest dynamics have also been important in the evolution of <it>Sylvia </it>lineages. Using a molecular phylogenetic hypothesis and other methods, we seek to develop a biogeographic hypothesis for <it>Sylvia </it>and to explicitly assess the roles of these climate-driven events.</p> <p>Results</p> <p>We present the first strongly supported molecular phylogeny for <it>Sylvia</it>. With one exception, species fall into one of three strongly supported clades: one small clade of species distributed mainly in Africa and Europe, one large clade of species distributed mainly in Africa and Asia, and another large clade with primarily a circum-Mediterranean distribution. Asia is reconstructed as the ancestral area for <it>Sylvia</it>. Long-distance migration is reconstructed as the ancestral character state for the genus, and sedentary behavior subsequently evolved seven times.</p> <p>Conclusion</p> <p>Molecular clock calibration suggests that <it>Sylvia </it>arose in the early Miocene and diverged into three main clades by 12.6 Ma. Divergence estimates indicate that the Messinian Salinity Crisis had a minor impact on <it>Sylvia</it>. Instead, over-water dispersals, repeated loss of long-distance migration, and palaeo-climatic events in Africa played primary roles in <it>Sylvia </it>divergence and distribution.</p
Theory of d-density wave viewed from a vertex model and its implications
The thermal disordering of the -density wave, proposed to be the origin of
the pseudogap state of high temperature superconductors, is suggested to be the
same as that of the statistical mechanical model known as the 6-vertex model.
The low temperature phase consists of a staggered order parameter of
circulating currents, while the disordered high temperature phase is a
power-law phase with no order. A special feature of this transition is the
complete lack of an observable specific heat anomaly at the transition. There
is also a transition at a even higher temperature at which the magnitude of the
order parameter collapses. These results are due to classical thermal
fluctuations and are entirely unrelated to a quantum critical point in the
ground state. The quantum mechanical ground state can be explored by
incorporating processes that causes transitions between the vertices, allowing
us to discuss quantum phase transition in the ground state as well as the
effect of quantum criticality at a finite temperature as distinct from the
power-law fluctuations in the classical regime. A generalization of the model
on a triangular lattice that leads to a 20-vertex model may shed light on the
Wigner glass picture of the metal-insulator transition in two-dimensional
electron gas. The power-law ordered high temperature phase may be generic to a
class of constrained systems and its relation to recent advances in the quantum
dimer models is noted.Comment: RevTex4, 10 pages, 11 figure
Modeling of Surface Damage at the Si/SiO-interface of Irradiated MOS-capacitors
Surface damage caused by ionizing radiation in SiO passivated silicon
particle detectors consists mainly of the accumulation of a positively charged
layer along with trapped-oxide-charge and interface traps inside the oxide and
close to the Si/SiO-interface. High density positive interface net charge
can be detrimental to the operation of a multi-channel -on- sensor since
the inversion layer generated under the Si/SiO-interface can cause loss of
position resolution by creating a conduction channel between the electrodes. In
the investigation of the radiation-induced accumulation of oxide charge and
interface traps, a capacitance-voltage characterization study of n/-
and -irradiated Metal-Oxide-Semiconductor (MOS) capacitors showed that
close agreement between measurement and simulation were possible when oxide
charge density was complemented by both acceptor- and donor-type deep interface
traps with densities comparable to the oxide charges. Corresponding inter-strip
resistance simulations of a -on- sensor with the tuned oxide charge
density and interface traps show close agreement with experimental results. The
beneficial impact of radiation-induced accumulation of deep interface traps on
inter-electrode isolation may be considered in the optimization of the
processing parameters of isolation implants on -on- sensors for the
extreme radiation environments.Comment: Corresponding author: T. Peltola. 24 pages, 17 figures, 6 table
Isolation and Characterization of the Saccharomyces cerevisiae DPP1 Gene Encoding Diacylglycerol Pyrophosphate Phosphatase
Diacylglycerol pyrophosphate (DGPP) is involved in a putative novel lipid signaling pathway. DGPP phosphatase (DGPP phosphohydrolase) is a membrane-associated 34-kDa enzyme fromSaccharomyces cerevisiae which catalyzes the dephosphorylation of DGPP to yield phosphatidate (PA) and then catalyzes the dephosphorylation of PA to yield diacylglycerol. Amino acid sequence information derived from DGPP phosphatase was used to identify and isolate the DPP1(diacylglycerol pyrophosphatephosphatase) gene encoding the enzyme. Multicopy plasmids containing the DPP1 gene directed a 10-fold overexpression of DGPP phosphatase activity in S. cerevisiae. The heterologous expression of the S. cerevisiae DPP1 gene in Sf-9 insect cells resulted in a 500-fold overexpression of DGPP phosphatase activity over that expressed in wild-type S. cerevisiae. DGPP phosphatase possesses a Mg2+-independent PA phosphatase activity, and its expression correlated with the overexpression of DGPP phosphatase activity in S. cerevisiae and in insect cells. DGPP phosphatase was predicted to be an integral membrane protein with six transmembrane-spanning domains. The enzyme contains a novel phosphatase sequence motif found in a superfamily of phosphatases. Adpp1Δ mutant was constructed by deletion of the chromosomal copy of the DPP1 gene. The dpp1Δ mutant was viable and did not exhibit any obvious growth defects. The mutant was devoid of DGPP phosphatase activity and accumulated (4-fold) DGPP. Analysis of the mutant showed that the DPP1 gene was not responsible for all of the Mg2+-independent PA phosphatase activity in S. cerevisiae
Magnetic Penetration Depth in Unconventional Superconductors
This topical review summarizes various features of magnetic penetration depth
in unconventional superconductors. Precise measurements of the penetration
depth as a function of temperature, magnetic field and crystal orientation can
provide detailed information about the pairing state. Examples are given of
unconventional pairing in hole- and electron-doped cuprates, organic and heavy
fermion superconductors. The ability to apply an external magnetic field adds a
new dimension to penetration depth measurements. We discuss how field dependent
measurements can be used to study surface Andreev bound states, nonlinear
Meissner effects, magnetic impurities, magnetic ordering, proximity effects and
vortex motion. We also discuss how penetration depth measurements as a function
of orientation can be used to explore superconductors with more than one gap
and with anisotropic gaps. Details relevant to the analysis of penetration
depth data in anisotropic samples are also discussed.Comment: topical review, 57 pages, 219 reference
Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations
Microelectrode arrays (MEA) record extracellular local field potentials of cells adhered to the electrodes. A disadvantage is the limited signal-to-noise ratio. The state-of-the-art background noise level is about 10 mu Vpp. Furthermore, in MEAs low frequency events are filtered out. Here, we quantitatively analyze Au electrode/electrolyte interfaces with impedance spectroscopy and noise measurements. The equivalent circuit is the charge transfer resistance in parallel with a constant phase element that describes the double layer capacitance, in series with a spreading resistance. This equivalent circuit leads to a Maxwell-Wagner relaxation frequency, the value of which is determined as a function of electrode area and molarity of an aqueous KCl electrolyte solution. The electrochemical voltage and current noise is measured as a function of electrode area and frequency and follow unambiguously from the measured impedance. By using large area electrodes the noise floor can be as low as 0.3 mu Vpp. The resulting high sensitivity is demonstrated by the extracellular detection of C6 glioma cell populations. Their minute electrical activity can be clearly detected at a frequency below about 10 Hz, which shows that the methodology can be used to monitor slow cooperative biological signals in cell populations
Effect of Ring Exchange on Orbital Antiferromagnet
We study the effect of four-particle ring exchange process on orbital
antiferromagnetic state that occurs in some correlated electron systems in two
dimensions. The primary question is whether the ring exchange process enhances
or suppresses the orbital antiferromagnetic ordering. Using the fact that the
orbital antiferromagnetic state arises in the large-N limit of the SU(N)
generalization of the t-J model, we consider the large-N limit of the t-J-
model where represents the four-particle ring exchange term. The phase
diagrams in the large-N mean field theory are obtained for the half-filling and
finite hole concentrations at zero temperature. It is found that the ring
exchange in general favors dimerized states or the inhomogeneous orbital
antiferromagnetic state, and suppresses the homogeneous orbital
antiferromagnetic state. We compare our results with other related models of
strongly correlated systems with ring exchange processes.Comment: 14 pages, 17 figure
Light induced single molecule frequency shift
Alight induced frequency shift of the 0-0 line was measured in two-photon excitation spectra of single diphenyloctatetraene molecules doped in a crystal matrix. The shifts were proportional to the laser power with a slope of about 600 MHz/W when the laser beam of about 300 mW power was focused to a diameter of 2 mu m. Significantly, the observed line broadenings were an order of magnitude smaller than the shifts. The effect is ascribed mainly to a ''fast'' energy exchange between a local vibration and thermal phonons created by the third harmonic C-H band absorption in the matrix, and partially to an ac Stark shift
Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis
The bacterial PorB porin, an ATP-binding beta-barrel protein of pathogenic Neisseria gonorrhoeae, triggers host cell apoptosis by an unknown mechanism. PorB is targeted to and imported by host cell mitochondria, causing the breakdown of the mitochondrial membrane potential (delta psi m). Here, we show that PorB induces the condensation of the mitochondrial matrix and the loss of cristae structures, sensitizing cells to the induction of apoptosis via signaling pathways activated by BH3-only proteins. PorB is imported into mitochondria through the general translocase TOM but, unexpectedly, is not recognized by the SAM sorting machinery, usually required for the assembly of beta-barrel proteins in the mitochondrial outer membrane. PorB integrates into the mitochondrial inner membrane, leading to the breakdown of delta psi m. The PorB channel is regulated by nucleotides and an isogenic PorB mutant defective in ATP-binding failed to induce delta psi m loss and apoptosis, demonstrating that dissipation of delta psi m is a requirement for cell death caused by neisserial infection
- …