20 research outputs found

    North American Winter Dipole: Observed and Simulated Changes in Circulations

    Get PDF
    In recent years, a pair of large-scale circulation patterns consisting of an anomalous ridge over northwestern North America and trough over northeastern North America was found to accompany extreme winter weather events such as the 2013–2015 California drought and eastern U.S. cold outbreaks. Referred to as the North American winter dipole (NAWD), previous studies have found both a marked natural variability and a warming-induced amplification trend in the NAWD. In this study, we utilized multiple global reanalysis datasets and existing climate model simulations to examine the variability of the winter planetary wave patterns over North America and to better understand how it is likely to change in the future. We compared between pre- and post-1980 periods to identify changes to the circulation variations based on empirical analysis. It was found that the leading pattern of the winter planetary waves has changed, from the Pacific–North America (PNA) mode to a spatially shifted mode such as NAWD. Further, the potential influence of global warming on NAWD was examined using multiple climate model simulations

    Temporal instability of lake charr phenotypes: synchronicity of growth rates and morphology linked to environmental variables

    Get PDF
    Pathways through which phenotypic variation among individuals arise can be complex. One assumption often made in relation to intraspecific diversity is that the stability or predictability of the environment will interact with expression of the underlying phenotypic variation. To address biological complexity below the species level, we investigated variability across years in morphology and annual growth increments between and within two sympatric lake charr Salvelinus namaycush ecotypes in Rush Lake, USA. A rapid phenotypic shift in body and head shape was found within a decade. The magnitude and direction of the observed phenotypic change was consistent in both ecotypes, which suggests similar pathways caused the variation over time. Over the same time period, annual growth increments declined for both lake charr ecotypes and corresponded with a consistent phenotypic shift of each ecotype. Despite ecotype‐specific annual growth changes in response to winter conditions, the observed annual growth shift for both ecotypes was linked, to some degree, with variation in the environment. Particularly, a declining trend in regional cloud cover was associated with an increase of early stage (ages 1‐3) annual growth for lake charr of Rush Lake. Underlying mechanisms causing changes in growth rates and constrained morphological modulation are not fully understood. An improved knowledge of the biology hidden within the expression of phenotypic variation promises to clarify our understanding of temporal morphological diversity and instability

    Trends and Controls on Water-Use Efficiency of an Old-Growth Coniferous Forest in the Pacific Northwest

    Get PDF
    At the ecosystem scale, water-use efficiency (WUE) is defined broadly as the ratio of carbon assimilated to water evaporated by an ecosystem. WUE is an important aspect of carbon and water cycling and has been used to assess forest ecosystem responses to climate change and rising atmospheric CO2 concentrations. This study investigates the influence of meteorological and radiation variables on forest WUE by analyzing an 18 year (1998–2015) half-hourly time series of carbon and water fluxes measured with the eddy covariance technique in an old-growth conifer forest in the Pacific Northwest, USA. Three different metrics of WUE exhibit an overall increase over the period 1998–2007 mainly due to an increase in gross primary productivity (GPP) and a decrease in evapotranspiration (ET). However, the WUE metrics did not exhibit an increase across the period from 2008 to 2015 due to a greater reduction in GPP relative to ET. The strength of associations among particular meteorological variables and WUE varied with the scale of temporal aggregation used. In general, vapor pressure deficit and air temperature appear to control WUE at half-hourly and daily time scales, whereas atmospheric CO2 concentration was identified as the most important factor controlling monthly WUE. Carbon and water fluxes and the consequent WUE showed a weak correlation to the Standard Precipitation Index, while carbon fluxes were strongly dependent on the combined effect of multiple climate factors. The inferred patterns and controls on forest WUE highlighted have implications for improved understanding and prediction of possible adaptive adjustments of forest physiology in response to climate change and rising atmospheric CO2 concentrations

    Do 2H and 18O in leaf water reflect environmental drivers differently?

    Get PDF
    We compiled hydrogen and oxygen stable isotope compositions (δ H and δ O) of leaf water from multiple biomes to examine variations with environmental drivers. Leaf water δ H was more closely correlated with δ H of xylem water or atmospheric vapour, whereas leaf water δ O was more closely correlated with air relative humidity. This resulted from the larger proportional range for δ H of meteoric waters relative to the extent of leaf water evaporative enrichment compared with δ O. We next expressed leaf water as isotopic enrichment above xylem water (Δ H and Δ O) to remove the impact of xylem water isotopic variation. For Δ H, leaf water still correlated with atmospheric vapour, whereas Δ O showed no such correlation. This was explained by covariance between air relative humidity and the Δ O of atmospheric vapour. This is consistent with a previously observed diurnal correlation between air relative humidity and the deuterium excess of atmospheric vapour across a range of ecosystems. We conclude that H and O in leaf water do indeed reflect the balance of environmental drivers differently; our results have implications for understanding isotopic effects associated with water cycling in terrestrial ecosystems and for inferring environmental change from isotopic biomarkers that act as proxies for leaf water

    Long-term impacts of road disturbance on old-growth coast redwood forests

    No full text
    In forest ecosystems, road expansions and other landcover changes create abrupt artificial boundaries that alter the microclimate along the forest edge, potentially impacting growth and physiology of bordering trees. To understand how previous landcover changes and road installations have affected coast redwoods (Sequoia sempervirens), we used dendroecological methods to contrast tree-ring growth patterns and stable isotopes (Δ13C) of redwoods before and after a known disturbance event, the expansion of Highway 101 in the 1950s, that bisected several old-growth stands of Humboldt Redwoods State Park. Increment cores were extracted from redwoods in old-growth stands that bordered the highway and other forest edges (secondary forests and agricultural fields) as well as two control areas. Disturbance detection methods and dendroclimatic modeling were then employed to determine whether the expansion led to growth suppression and elevated water stress. Tree-ring growth data indicated that the construction of Highway 101 disproportionately impacted the growth of trees that were within 30 m of the highway and that these effects were particularly elevated in trees that currently exhibit crown dieback. Similarly, climatic modeling of tree-ring Δ13C data indicated that highway adjacent trees also experienced elevated water stress for several decades following the construction of the highway. By analyzing tree-ring data of redwoods within Humboldt Redwoods State Park, here we provide critical insight to the temporal and spatial implications of the habitat fragmentation and road installation that has been nearly ubiquitous in the redwood distribution since Euro-American settlement

    Spruce Beetle Outbreak Was Not Driven by Drought Stress: Evidence from a Tree-ring Iso-demographic Approach Indicates Temperatures Were More Important

    No full text
    Climate change has amplified eruptive bark beetle outbreaks over recent decades, including spruce beetle (Dendroctonus rufipennis). However, for projecting future bark beetle dynamics there is a critical lack of evidence to differentiate how outbreaks have been promoted by direct effects of warmer temperatures on beetle life cycles versus indirect effects of drought on host susceptibility. To diagnose whether drought-induced host-weakening was important to beetle attack success we used an iso-demographic approach in Engelmann spruce (Picea engelmannii) forests that experienced widespread mortality caused by spruce beetle outbreaks in the 1990s, during a prolonged drought across the central and southern Rocky Mountain region. We determined tree death date demography during this outbreak to differentiate early- and late-dying trees in stands distributed across a landscape within this larger regional mortality event. To directly test for a role of drought stress during outbreak initiation we determined whether early-dying trees had greater sensitivity of tree-ring carbon isotope discrimination (∆13C) to drought compared to late-dying trees. Rather, evidence indicated the abundance and size of host trees may have modified ∆13C responses to drought. ∆13C sensitivity to drought did not differ among early- versus late-dying trees, which runs contrary to previously proposed links between spruce beetle outbreaks and drought. Overall, our results provide strong support for the view that irruptive spruce beetle outbreaks across North America have primarily been driven by warming-amplified beetle life cycles whereas drought-weakened host defenses appear to have been a distant secondary driver of these major disturbance events

    Efficient SpiNNaker simulation of a heteroassociative memory using the Neural Engineering Framework

    No full text
    The biological brain is a highly plastic system within which the efficacy and structure of synaptic connections are constantly changing in response to internal and external stimuli. While numerous models of this plastic behavior exist at various levels of abstraction, how these mechanisms allow the brain to learn meaningful values is unclear. The Neural Engineering Framework (NEF) is a hypothesis about how large-scale neural systems represent values using populations of spiking neurons, and transform them using functions implemented by the synaptic weights between populations. By exploiting the fact that these connection weight matrices are factorable, we have recently shown that static NEF models can be simulated very efficiently using the SpiNNaker neuromorphic architecture. In this paper, we demonstrate how this approach can be extended to efficiently support both supervised and unsupervised learning rules designed to operate on these factored matrices. We then present a heteroassociative memory architecture built using these learning rules and prove that it is capable of learning a human-scale semantic network. Finally we demonstrate a 100 000 neuron version of this architecture running on the SpiNNaker simulator with a speed-up exceeding 150x when compared to the Nengo reference simulator

    Anisohydric water use behavior links growing season evaporative demand to ring-width increment in conifers from summer-dry environments

    No full text
    Key message: Compared to isohydric Pinaceae, anisohydric Cupressaceae exhibited: (1) a threefold larger hydroscape area; (2) growth at lower pre-dawn water potentials that extended longer into the growing season; and (3) stronger coupling of growth to growing season atmospheric moisture demand in summer-dry environments. Abstract: Conifers in the Pinaceae and Cupressaceae from dry environments have been shown to broadly differ in their stomatal sensitivity to soil drying that result in isohydric versus anisohydric water use behavior, respectively. Here, we first employ a series of drought experiments and field observations to confirm the degree of isohydric versus anisohydric water use behavior in species of these two families that are representative of the Interior West of the United States. We then use experimental soil drying to demonstrate how growth of anisohydric Juniperus osteosperma was more closely tied to pre-dawn water potentials than isohydric Pinus monophylla. Finally, we confirm that measured leaf gas-exchange and growth responses to drying hold real-world consequences for conifers from the Interior West. More specifically, across the past ~ 100 years of climate variation, pairwise comparisons of annual ring-width increment responses indicate that growth of Cupressaceae species (J. osteosperma and J. scopulorum) was more strongly coupled to growing season evaporative demand than co-occurring Pinaceae species (Pinus monophylla, P. edulis, P. flexilis, P. longaeva, P. ponderosa, and Pseudotsuga menziesii). Overall, these experimental and observational results suggest that an a priori distinction based on family and associated hydric water use behavior should lead to more accurate and mechanistically correct dendrochronological reconstructions of growing season evaporative demand (i.e., Cupressaceae) versus antecedent precipitation (i.e., Pinaceae) in summer-dry environments. Moreover, these differences in growth sensitivity to evaporative demand among these groups suggest that incorporating hydric water use behavior into models of forest responses to global warming can provide more accurate projections of future forest composition and functioning

    North American Winter Dipole: Observed and Simulated Changes in Circulations

    No full text
    In recent years, a pair of large-scale circulation patterns consisting of an anomalous ridge over northwestern North America and trough over northeastern North America was found to accompany extreme winter weather events such as the 2013–2015 California drought and eastern U.S. cold outbreaks. Referred to as the North American winter dipole (NAWD), previous studies have found both a marked natural variability and a warming-induced amplification trend in the NAWD. In this study, we utilized multiple global reanalysis datasets and existing climate model simulations to examine the variability of the winter planetary wave patterns over North America and to better understand how it is likely to change in the future. We compared between pre- and post-1980 periods to identify changes to the circulation variations based on empirical analysis. It was found that the leading pattern of the winter planetary waves has changed, from the Pacific–North America (PNA) mode to a spatially shifted mode such as NAWD. Further, the potential influence of global warming on NAWD was examined using multiple climate model simulations

    Local groundwater decline exacerbates response of dryland riparian woodlands to climatic drought

    Get PDF
    Dryland riparian woodlands are considered to be locally buffered from droughts by shallow and stable groundwater levels. However, climate change is causing more frequent and severe drought events, accompanied by warmer temperatures, collectively threatening the persistence of these groundwater dependent ecosystems through a combination of increasing evaporative demand and decreasing groundwater supply. We conducted a dendro-isotopic analysis of radial growth and seasonal (semi-annual) carbon isotope discrimination (Δ C) to investigate the response of riparian cottonwood stands to the unprecedented California-wide drought from 2012 to 2019, along the largest remaining free-flowing river in Southern California. Our goals were to identify principal drivers and indicators of drought stress for dryland riparian woodlands, determine their thresholds of tolerance to hydroclimatic stressors, and ultimately assess their vulnerability to climate change. Riparian trees were highly responsive to drought conditions along the river, exhibiting suppressed growth and strong stomatal closure (inferred from reduced Δ C) during peak drought years. However, patterns of radial growth and Δ C were quite variable among sites that differed in climatic conditions and rate of groundwater decline. We show that the rate of groundwater decline, as opposed to climate factors, was the primary driver of site differences in drought stress, and trees showed greater sensitivity to temperature at sites subjected to faster groundwater decline. Across sites, higher correlation between radial growth and Δ C for individual trees, and higher inter-correlation of Δ C among trees were indicative of greater drought stress. Trees showed a threshold of tolerance to groundwater decline at 0.5 m year beyond which drought stress became increasingly evident and severe. For sites that exceeded this threshold, peak physiological stress occurred when total groundwater recession exceeded ~3 m. These findings indicate that drought-induced groundwater decline associated with more extreme droughts is a primary threat to dryland riparian woodlands and increases their susceptibility to projected warmer temperatures
    corecore