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Abstract
At the ecosystem scale, water-use efficiency (WUE) is defined broadly as the ratio of carbon assimilated
towater evaporated by an ecosystem.WUE is an important aspect of carbon andwater cycling and has
been used to assess forest ecosystem responses to climate change and rising atmospheric CO2

concentrations. This study investigates the influence ofmeteorological and radiation variables on
forestWUEby analyzing an 18 year (1998–2015)half-hourly time series of carbon andwater fluxes
measuredwith the eddy covariance technique in an old-growth conifer forest in the PacificNorthwest,
USA. Three differentmetrics ofWUE exhibit an overall increase over the period 1998–2007mainly
due to an increase in gross primary productivity (GPP) and a decrease in evapotranspiration (ET).
However, theWUEmetrics did not exhibit an increase across the period from2008 to 2015 due to a
greater reduction inGPP relative to ET. The strength of associations among particularmeteorological
variables andWUE variedwith the scale of temporal aggregation used. In general, vapor pressure
deficit and air temperature appear to controlWUE at half-hourly and daily time scales, whereas
atmospheric CO2 concentrationwas identified as themost important factor controllingmonthly
WUE.Carbon andwaterfluxes and the consequentWUE showed aweak correlation to the Standard
Precipitation Index, while carbon fluxeswere strongly dependent on the combined effect ofmultiple
climate factors. The inferred patterns and controls on forestWUEhighlighted have implications for
improved understanding and prediction of possible adaptive adjustments of forest physiology in
response to climate change and rising atmospheric CO2 concentrations.

Introduction

Forest carbon dynamics and water cycling are tightly
coupled as plants balance carbon gain against water
loss through the regulation of stomatal conductance
(Baldocchi et al 1987, Baldocchi 1997, Whitehead
1998). The rate of carbon gain per unit of water loss,
known as water use efficiency (WUE), has been widely
recognized as an important physiological link between
carbon and water cycling in terrestrial ecosystems, and
used to track and predict ecosystem responses to
climate change and the increase in atmospheric CO2

concentration (Zhu et al 2011, Battipaglia et al 2013,

Voelker et al 2016). Therefore, a comprehensive
characterization of WUE responses to climate anoma-
lies (i.e. departures from the long-term average) is
crucial for predicting plant responses to future climate
change (Seibt et al 2008).

WUE has been defined in several ways. In forests,
WUE is typically determined either by measuring the
stable carbon isotope composition of foliage or tree
rings, or by using the eddy covariance method to
estimate ecosystem-scale carbon and water fluxes
(Monson et al 2010, Michelot et al 2011, Belmecheri
et al 2014, Scartazza et al 2014, Guerrieri et al 2016).
Carbon analyses yield estimates of intrinsic WUE
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(CO2 assimilation/stomatal conductance), whereas
the eddy covariance-basedWUE tracks the ratio of the
biometeorological fluxes. Tree-ring isotope data show
that the ratio of photosynthesis to stomatal con-
ductance greatly increased in the past century among
most forest types, likely attributable to the impacts of
rising atmospheric CO2 concentrations on both pho-
tosynthesis and stomatal conductance (Peñuelas et al
2008, Andreu-Hayles et al 2011). At the ecosystem
scale, WUE estimated using the eddy covariance
method exhibit a similar increasing trend in a number
of temperate and boreal forests of theNorthernHemi-
sphere over the past two decades as a result of reduced
ecosystem transpiration (Keenan et al 2013). The
reduction in ecosystem transpiration is hypothesized
to have been driven by a decline in stomatal con-
ductance in response to rising atmospheric CO2

(Keenan et al 2013) and by plasticity in plant func-
tional traits over time (Mastrotheodoros et al 2017).
Keenan et al (2013) point out that the observed
increase in forest WUE is beyond empirical estimates
and most model predictions. Although the trend of
increasing WUE appears to be robust across the forest
ecosystems that have been studied, Huntzinger et al
(2017) argue that the CO2 fertilization effect might be
overestimated in most mechanistic models. These
apparently contradictory findings impose high uncer-
tainty in the patterns of WUE in response to climate
variability (Reichstein et al 2002, 2007, Medrano et al
2009), and highlight the knowledge gap in under-
standing themechanisms regulatingWUE acrossmul-
tiple spatial and time scales (Guerrieri et al 2016,
Knauer et al 2017).

Old-growth forests were estimated to encompass
7.9 Mha in western Oregon and Washington prior to
logging, of which 13.1%–17.5% remained by the
1980s (Booth 1991). Currently, these forests are threa-
tened by extreme climate anomalies such as drought
and heat stress (Law and Waring 2015). At the Wind
River site, a 500 year old evergreen coniferous forest,
Jiang et al (2019) demonstrate that changes in ecosys-
tem carbon and water fluxes are primarily controlled
by tree physiology: high vapor pressure deficit causes
stomata to close, thereby lowering transpiration and
photosynthesis, which in turn changes WUE over
time. In the summer, transpiration at the Wind River
site comprises roughly 85% of total water loss (defined
here as evapotranspiration which does not include
runoff) (Rastogi 2018). Under future scenarios with
hotter summers and drier winters (Mote and Salathé
2010, Mote et al 2014), less available water during the
growing season may alter the balance between tran-
spiration and photosynthesis, thereby altering WUE.
Additionally, rising atmospheric CO2 concentrations
may partially offset drying of the climate, as higher
CO2 concentrations reduce evapotranspiration by
decreasing canopy conductance (Yang et al 2019).
Although many possible drivers of WUE have been

identified, the general mechanisms of change remain
poorly understood.

This study aims to better understand howWUE of
the old-growth forest responds to climate anomalies
and long-term shifts in climate in the Pacific North-
west, USA. Given the strong physiological control of
climate on carbon and water exchanges at this site
(Jiang et al 2019), we hypothesize that climate anoma-
lies—in addition to rising atmospheric CO2 con-
centrations—drive changes inWUE, and that patterns
of meteorological controls vary across different time
scales. For example, under increasing atmospheric
CO2 concentration (observed to be +3 ppm yr−1,
R2= 0.82), along with possible changes in VPD, we
hypothesize that WUE would exhibit a significant
increase for the period of 1998–2015. To test these
hypotheses, we identify possible trends in WUE and
examine the influence of meteorological variables on
WUE by analyzing an 18 year (1998–2015) time series
of carbon and water fluxes measured with the eddy
covariancemethod.

Data andmethods

Study area
Our study area is an old-growth evergreen coniferous
forest stand in the Wind River Experimental Forest,
located in the T. T. Munger Research Natural Area in
the southern Cascade Range of Washington State,
USA (45°49′13.76″ N; 121°57′06.88″ W; 371 m asl).
The forest is 450–500 years old and dominated by
Douglas-fir (Pseudotsuga menziesii) and western hem-
lock (Tsuga heterophylla) trees (Shaw et al 2004).
Douglas-fir trees dominate the basal area and upper
canopy given their exceptional size and stature—the
tallest trees are 67 m in height—while western hem-
lock trees dominate the stem density of the stand and
leaf biomass in the mid-canopy and lower canopy
(Shaw et al 2004). Within this forest is an 87 m free-
standing tower that has been equipped with micro-
meteorological and eddy covariance instrumentation
that has been in operation since 1998.

At the site, leaf biomass is unevenly distributed in
the vertical direction reflecting the complex structure
of the old-growth stand (Thomas and Winner 2000,
Parker et al 2004). Water table depth is seasonally vari-
able and ranges from 0.3 to 0.5 m in the wet winter
months to a depth of 2.0–2.4 m in the summer and
early autumn (Warren et al 2005). Winters are rela-
tivelymild andwet, with amean temperature of 1.8 °C
andmean precipitation of 990 mm; whereas summers
are dry andwarm, with amean precipitation of 76 mm
and mean temperature of 17.7 °C. Due to the strong
seasonality of precipitation, total annual precipitation
is best described in terms of the water-year, beginning
with October and ending in September. Mean annual
air temperature is 9.2 °C, and mean water-year pre-
cipitation is 2173 mm. Precipitation was measured
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daily by rain and snow gauges at the Carson Fish
Hatchery near the site (−121.973°, 45.8677°). The
measured major climate variables in the growing sea-
son (March–September) shows great annual vari-
abilities across the period of 1998–2015 (figure S1 is
available online at stacks.iop.org/ERL/14/074029/
mmedia).

Data preparation
We obtained half-hourly carbon and water vapor
fluxes from gap-filled eddy-covariance measurements
taken at the site for the period of 1998–2015 (http://
ameriflux.lbl.gov/sites/siteinfo/US-Wrc, Wharton
1998–2016). Evapotranspiration (ET) (g m−2 s−1) was
calculated from canopy latent heat fluxmeasurements
(LE). We suspected that LE may have been under-
estimated in 2010–2013 measurements due to a
calibration error with the infrared gas analyzer (IRGA)
(Wharton, personal communication). Therefore, ET
was corrected for that period using estimated H2O
concentrations from a humidity sensor (supplemental
material SM1). All rainy days and two subsequent days
were excluded from the analysis to exclude evapora-
tion from wet leaves and soil surfaces (Grelle et al
1997). Thus, we assumed that growing season water
flux primarily represented transpiration (Rastogi
2018). Following Wharton and Falk (2016), our
analysis focused on daytime periods (8 am–4 pm)
from March to September, which avoided measure-
ment technique uncertainties caused by non-ideal
atmospheric conditions (e.g. calm, poorly mixed
nighttime stable air in the canopy, periods of heavy
rain, and ice and snow).We ignored the evaporation of
dew since there was no direct way of estimating dew
quantity in the absence of leaf wetness measurements
throughout the canopy profile. However, H2O vapor
profile measurements from a recent study at the site
demonstrate that dew is not a substantial part of the
measured ET fluxes in this forest, particularly during
the daytime (Rastogi et al 2018a).

Methods
To evaluate WUE trends, we defined and compared
three metrics of ecosystem-scale WUE. The first
metric, photosynthetic WUE (pWUE), was defined as
the ratio of gross primary production (GPP) to
evapotranspiration (ET). The second metric was
inherent water-use efficiency (ihWUE), the ratio of the
product of GPP and vapor pressure deficit (VPD) to
ET (Beer et al 2009). Both pWUE and ihWUE have
been widely used to investigate ecosystem-scale
responses to environmental change (Law et al 2002,
Keenan et al 2013, Knauer et al 2017,Mastrotheoderos
et al 2017, Wang et al 2018). The third metric was the
ratio of net ecosystem exchange (NEE) to ET (eWUE),
which avoids potential errors in estimating GPP
arising from NEE partitioning. For more information
on NEE partitioning and the assumptions used to

calculate ecosystem respiration (RE) and GPP atWind
River see Falk et al (2008).

We calculated each WUEmetric during the grow-
ing season at four time scales: half-hourly, daily,
monthly, and seasonally. We also examined the inter-
annual trend of growing season WUE from 1998 to
2015 for each metric. Due to the strong seasonality of
carbon fluxes (Wharton et al 2012), we performed the
analysis for two periods: (1)March–June, when water
is usually not a significant limiting resource; and
(2) July–September, when there are stronger atmo-
spheric demands on water availability and soil water
may become limiting. Because of possible errors with
the IRGA in 2010–2013, we examined trends both
before 2010 and for the entire time series, using error-
corrected data. To evaluate the effect of incident
radiation on WUE, we calculated the ratio of day-
time diffuse radiation to total shortwave radiation
(r= Rdiff/Rshort), and then categorized days as sunny
(r<=0.2), partly cloudy (0.2<r<0.6), and cloudy
(r>=0.6). We used linear regression of WUE on the
diffuse ratio r to evaluate the effects of cloudiness.

To estimate the effect of atmospheric conditions
on stomatal regulation of ecosystem water fluxes, we
calculated canopy conductance (Gc, m s−1) using the
inverted Penman–Monteith equation (Monteith 1964,
Stewart 1988).
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where ρ is air density (kg m−3), cp is specific heat
(J kg−1 K−1), VPD is vapor pressure deficit (kPa), γ is
the psychrometric constant (kPaK−1), LE is latent heat
flux (W m−2), Δ is slope of the saturation vapor
pressure curve (kPa K−1), β is the Bowen ratio, andGa

is aerodynamic conductance for momentum transfer

*
=( )G u Ua

2 (m s−1). All variables were derived from
micrometeorological and eddy-covariance data at the
half-hourly time scale.

To provide a comprehensive analysis of the rela-
tionships among different climate variables andWUE,
we used multiple linear regression (MLR) and a
machine learning technique called boosted regression
trees (BRT) (Elith et al 2008) to rank the relative
importance of possible meteorological predictors of
WUE. The six meteorological variables we examined
were VPD, air temperature, soil water content, CO2

concentration, solar radiation, and wind speed. BRT
and MLR were performed at half-hourly, daily and
monthly time scales. In general, BRT is less sensitive to
variable covariance than MLR, and can detect non-
linear thresholds (Olden et al 2008).

To explore the influence of drought severity on
WUE, we compared GPP, NEP (-NEE) and ET among
years with contrasting values of the Standardized
Precipitation Index (SPI, McKee et al 1993). SPI is
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calculated from long-term monthly precipitation time
series and represents precipitation drought. An arbi-
trary averaging period (i.e. 3, 6, 12, 24, or 48months) is
selected to determine the time scale to reflect the impact
of drought on the availability of ecosystem water
resources. Positive SPI values indicate above normal
precipitation while negative SPI values indicate below
normal. Because SPI is normalized, it can represent the
severity of both wetness and dryness. SPI ranges from
−3 (extremely dry) to +3 (extremely wet) and is cate-
gorized into seven classes representing drought inten-
sities, with values from −1 to 1 considered to be
‘normal’ (table 1, McKee et al 1993). SPI compares the
accumulated precipitation during a period of i months
with the long-term accumulated precipitation distribu-
tion for the same accumulation period. However, it
should be noted that SPI does not include water losses
due to evapotranspiration or runoff and thus likely
overestimateswater availability at the site.

We calculated SPI based on the long-term pre-
cipitation record from 1919 to 2015 following McKee
et al (1993) and used 6 month SPI to identify seasonal
precipitation anomalies that may reflect anomalies in
soil water storage for the period of 1997–2015. We
averaged the 6 month SPI values for the wet season
(November–April) and the dry season (May–Septem-
ber) to identify interannual patterns of drought for the
study period 1997–2015. We explore the effects of
drought severity on forest productivity by examining
drought relationship to carbon and water flux values
for two phases of the growing season (GS): early GS
(March–June) and late GS (July–September). Based on
SPI, we compared the climate anomalies and carbon
and water fluxes of three individual years with distinct
seasonal drought intensities relative to 1998–2015
average: 2004 (normal early GS, normal late GS); 2006
(normal early GS, severely dry late GS); and 2015
(moderately dry early GS, severely dry late GS).

Results

All three measures of water use efficiency (WUE)
calculated during the full growing season (March–
September) exhibited statistically significant increas-
ing interannual trends (p< 0.05) from 1998 to 2007,
based on linear regressions (figure 1). Specifically,

photosynthetic WUE (pWUE) and ecosystem WUE
(eWUE) increased 0.1 and 0.07 g C kg−1 H2O yr−1

respectively, and inherent WUE (ihWUE), which
directly accounts for VPD, rose by 0.18 g C kg−1 H2O
hPa yr−1. However, trends in all three measures of
WUEwere not statistically significant when the period
2008–2015 was included. In particular, eWUE values
appeared to exhibit little trend except for a few high-
value years. No WUE metric showed an obvious
response to drought severity, as represented by low SPI
values, likely because evapotranspiration (ET) is not
included in the precipitation index. For example,
pWUE and eWUE were exceptionally low in both a
wet year (1999) and a dry year (2015).

Examination of individual carbon andwater fluxes
highlights the drivers of observed interannual patterns
of WUE. There were no statistically significant inter-
annual trends in carbon fluxes (GPP, RE, NEP) in
either early (March–June) or late (July–September)
growing season through the entire 18 year period at
the p=0.05 level, although early seasonGPP declined
with a p= 0.07 level of significance. Ecosystem water
fluxes (ET) in the early growing season decreased sig-
nificantly (p<0.01) over the 18 year period (figure 2).
Larger inter-annual variability of ET also contributed
to the lack of significant trends inWUEmetrics across
the entire record.

Variations in eddy covariance-inferred canopy
conductance (Gc) across the record helped clarify eco-
system trends. Gc exhibited a strong trend over the
18 year period, decreasing by 14.4 m h−1 or 53% in the
late growing season (figure 3(a)). This decline was
associated with an overall increasing trend of VPD
during the same period (p=0.17, figure 3(b)). Due to
large annual variations, Gc and VPD showed no sig-
nificant trends in the early growing season. Although
Gc was estimated by multiple variables changing with
time, daily Gc values were tightly correlated with VPD
(figure 3(c)). The hyperbolic curves fitted to early and
late growing season data were statistically significant
and had similar shapes, with Gc being severely con-
strained above aVPDof 1 kPa.

There was high inter-annual variability in drought
severity from 1998 to 2015 (figures 4(a) and (b)). We
examined the averaged SPI of the wet season (Novem-
ber–April) to assess accumulated precipitation for the
early growing season, and, similarly, the averaged SPI
of the dry season (May–September) for the late grow-
ing season. For the wet season, there were as many
drier-than-normal years as there were wetter-than-
normal years. For the dry season, 3 of the 18 years were
considered to be drier than normal based on SPI
values using the 1919–2015 record (table 1).We found
weak (|ρ|<0.4) and statistically insignificant correla-
tions between various ecosystem measures (including
the threeWUEmetrics) and SPI for both early and late
growing seasons (figure 4(c)).

Examining periods with contrasting drought seve-
rities (as represented by SPI) revealed possible

Table 1. Levels of drought severity (McKee
et al 1993).

SPI value Class

SPI�2.0 Extremelywet

1.5�SPI<2.0 Severely wet

1.0�SPI<1.5 Moderately wet

−1.0<SPI<1.0 Normal

−1.5<SPI�−1.0 Moderately dry

−2.0<SPI�−1.5 Severely dry

SPI�−2.0 Extremely dry
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physiological controls on the timing andmagnitude of
carbon and water vapor fluxes (table 2). Using the 18
year averaged SPI as a baseline, we selected 2004 as a
representative normal year, 2006 as a moderately dry
year, and 2015 as a severely dry year. 2004 follows a
large carbon source year in 2003 when ecosystem
respiration was higher than normal due to higher
temperatures but near-normal precipitation. In 2004
SPI values were normal in both the early and late
growing seasons. Higher-than-average air temper-
ature (+1.5 °C) and soil water content (SWC,
+5.6 m3 m−3) led to high GPP (+92 mg Cm−2 h−1)

and NEP (+54 mg Cm−2 h−1) during the early grow-
ing season. In the late growing season, VPD was
slightly lower than average while SWC and precipita-
tion were higher, and gross productivity and net
productivity measures (GPP and NEP) were not sig-
nificantly different from the 18 year averages.

In 2006, the moderately dry year, SPI values
showed ‘normal’ to ‘severely dry’ conditions from the
early to the late growing season. In that year, although
precipitation was considerably lower than the
baseline (by −195 mm), higher SWC (+6.2 m3 m−3)
and greater GPP (+84 mg Cm−2 h−1) and NEP

Figure 1.PhotosyntheticWUE (left), inherentWUE (center) and ecosystemWUE (right) during the growing-season (March–
September) from 1998 to 2015. All values are derived fromhalf-hourly data from8 am to 4 pm. The purple points represent wet years
when the Standardized Precipitation Index (SPI,McKee et al 1993) is positive or zero, and yellow points represent dry years when SPI
is negative. The black solid lines represent linear regressions from1998 to 2015, while the dashed lines represent linear regressions for
only 1998–2007. Both dry andwet years are used in the regressions.

Figure 2.Daytimemean gross primary production (a), ecosystem respiration (b), net ecosystemproduction (c), and evapotranspira-
tion (d) as determined by the eddy covariancemethod for the early growing season (March–June, purple) and the late growing season
(July–September, yellow) periods from1998 to 2015. All values are integrated fromhalf-hourly data from8 am to 4 pm. Purple and
yellow lines represent linear regressions for early and late growing seasons, respectively.
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(+93 mg Cm−2 h−1)were observed in the early grow-
ing season. During the late growing season, although
the SPI indicated a severe drought, mild climatic con-
ditions and sufficient SWC led to higher GPP andNEP
than normal.

In 2015, a severely dry year, SPI valueswere ‘moder-
ately dry’ in the early growing season, and ‘severely dry’
in the late growing season. In the early growing season,
extremely high air temperatures (+3.2 °C) and VPD
(+3.8 hPa) along with very low precipitation
(−204mm) suppressed SWC (−3.4 m3m−3), GPP
(−113mg Cm−2 h−1), and NEP (−48mg Cm−2 h−1).
In the late growing season, a similar dynamic was
observed under a severe drought (SPI=−1.6). Anom-
alously high VPD (+3.3 hPa) strongly suppressed GPP
(−159mg Cm−2 h−1) and NEP (−40mg Cm−2 h−1)
compared to the baseline. Consequently, the entire
growing season in 2015 had substantially lower GPP
(−133mg Cm−2 h−1) and NEP (−44mg Cm−2 h−1)
relative to the 18 year average. Evapotranspiration
showed no significant differences among the three
selected years, implying it is insensitive to precipitation
drought at this site.

For each metric of WUE, the strength of associa-
tions with environmental variables varied by time
scale (e.g. for pWUE, figure 5). Both boosted regres-
sion tree (BRT) and MLR identified incoming

shortwave radiation and VPD as the most important
variables in regulating the half-hourly pWUE
(figures 5(a) and (b)). In theMLR analysis, air temper-
ature was as important as VPD in determining half-
hourly pWUE. However, the importance calculated in
MLR can be biased by strong variable covariance,
therefore it may overpredict the importance of air
temperature and VPD, which are highly correlated
(ρ=0.91). At the daily scale, BRT and MLR both
indicated strong importance of VPD, which was sig-
nificantly greater than that of any other variable
(figures 5(c) and (d)). The importance of canopy con-
ductance (Gc) at the daily and sub-daily time-scale
suggested stomatal closure in response to high VPD
was the primary mechanism governing pWUE. With
both analyses techniques CO2 concentration emerged
as the strongest driver of pWUE at the monthly scale,
followed by air temperature (figures 5(e) and (f)). The
importance of SWCwasmuch higher at monthly scale
than at the daily and sub-daily scale. A possible expla-
nation for the importance of CO2 was that in certain
months of the year (usually in the spring) there was
plentiful water and radiation at this site, and therefore
CO2 concentration played a pivotal role in enhancing
photosynthesis and thereby pWUE.

Both BRT and MLR analyses indicated that air
temperature primarily controlled half-hourly eWUE,

Figure 3.Canopy conductance (Gc) of early (March–June) and late (July–September) growing seasons (left), and dailyGc versus vapor
pressure deficit (VPD) (right). Data are from8 am–4 pm, 1998 to 2015. Gc is estimated by the Penman–Monteithmethod
(Stewart 1988).

Figure 4. Standardized Precipitation Index (SPI,McKee et al 1993) of thewet season (November–April) (a) and dry season (May–
October) (b) from1998 to 2015, and correlation coefficients of carbon flux, waterflux, andWUEmetrics to SPI (c). In panels a and b,
SPI values are averaged for the season each year, and blue bars represent positive SPI values and yellow bars represent negative SPI
values. In panel (c), the correlation coefficients are calculated separately for the early growing season (March–June) and for the late
growing season (July–September).
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likely due to its strong control on ecosystem respira-
tion (figure S2). MLR also identified VPD having a
similar importance as air temperature, owing to the
dependence of VPD on air temperature, and because
MLR cannot decompose their correlation. At daily and
monthly scales, CO2 concentration had the greatest
importance on eWUE in the BRT analysis. In contrast,
the MLR analysis showed that air temperature and
VPD strongly controlled daily eWUE, while CO2 con-
centration was most important at the monthly scale.
The same analysis for ihWUE showed that air temper-
ature had an overwhelming effect on ihWUE at half-
hourly and daily time-scales (figure S3). This was
probably due to the high correlation between air
temperature and VPD, which is a variable in the calc-
ulation of ihWUE. At the monthly time scale, BRT
indicated that CO2 concentration and radiation were
equally important and largely controlled ihWUE.
MLR additionally included air temperature along with
CO2 concentration and radiation as the strongest con-
trols on ihWUEon themonthly time scale.

We explored the influence of incident radiation on
WUEby linearly regressing daily pWUE and eWUEon
cloudiness, as represented by the ratio of diffuse radia-
tion to total shortwave radiation (figure 6). Daily
pWUE and eWUE both significantly increased with
cloudiness, although with some variability. Average
pWUE values within the diffuse ratio bins represent-
ing sunny, partly cloudy, and cloudy dayswere 1.7, 2.6,
and 3.7 g C kg−1 H2O, respectively, and eWUE avera-
ges were 0.6, 1.6, and 2.7 g C kg−1 H2O, respectively. A
10% proportional increase in the diffuse light metric
(Rdiff/Rshort), i.e. a change in the diffuse ratio of 0.1,
corresponded to a ∼0.3 g C kg−1 H2O increase in
pWUE and eWUE. A similar analysis determined that
ecosystem respiration was only weakly related to the
diffuse lightmetric.

Discussion

All three metrics of ecosystem-scale WUE increased
between 1998 and 2015, with significant increases
restricted to the period before 2008. Between 2008 and
2015 a proportionally greater reduction in GPP
relative to ET slowed the rate of increase in WUE and
thus statistically significant WUE trends across the
entire record disappeared. In this section, we focus on
discussing themechanisms that influence GPP and ET
and control variation in WUE, including forest
responses to drought.

WhatmechanismdrivesWUEacross different time
scales?
WUEmetrics showed a time-scale dependence on the
external environment. In general, VPD and air temp-
erature controlled all three WUE metrics at half-
hourly and daily time scales, while atmospheric CO2

concentration was identified as the most important
indicator of monthly WUEs. Our analysis of variable
importance using amachine learning technique (BRT)
and a traditional statistical method (MLR) partly agree
with a wavelet cross-correlation analysis byWagle et al
(2016), which indicates that variations in carbon
uptake and evapotranspiration mostly resonate with
VPD and air temperature from half-hourly to weekly
timescales. The high dependence of WUE on VPD at
sub-daily and daily time-scale implies a strong impact
of atmospheric water demand on stomatal conduc-
tance which directly affects transpiration and indir-
ectly affects photosynthesis. This hydraulic constraint
can be evidenced by the diurnal measurements of
stomatal conductance from the Wind River crane,
which showed that it peaks relatively early in the day at
about 8:30 am and then declines fairly sharply to an
afternoon plateau (Woodruff et al 2007, Domec et al
2008). A linear regression indicates that the day-time

Table 2. Standard precipitation index (SPI), environmental conditions, and ecosystem fluxes for selected years. In year 2004 SPI
values are ‘normal’ in both early and late growing seasons (McKee et al 1993, table 1). In year 2006 SPI values transition from
‘normal’ to ‘severely dry’ from the early to the late growing season. In year 2015 SPI values are ‘moderately dry’ in the early growing
season, and ‘severely dry’ in the late growing season. Values other than SPI are shown as anomalies from18 year (1998–2015)
averages. An anomaly is shownwhen it is greater than or equal to 1σ of the 18 yearly values; otherwise it is considered insignificant
andmarked by *. Environmental conditions include air temperature (Tair), vapor pressure deficit (VPD), soil water content (SWC),
and precipitation (PPT). Ecosystemfluxes are gross primary productivity (GPP), evapotranspiration (ET), and net ecosystem
productivity (NEP).

Early growing season

(March–June)
Late growing season

(July–September)
Growing season

(March–September)

2004 2006 2015 2004 2006 2015 2004 2006 2015

SPI −0.8 0.3 −1.1 0 −1.8 −1.6 −0.5 −0.6 −1.3

ΔTair (°C) 1.5 * 3.2 * * 0.8 * * 2.1

ΔVPD (hPa) * * 3.8 −2.9 * 3.3 * * 3.5

ΔSWC (m3m−3) 5.6 6.2 −3.4 10.0 * −4.4 7.7 4.4 −3.6

ΔPPT (mm) * −195 −204 191 * * * −262 −245

ΔGPP (mgCm−2 h−1) 92 84 −113 * 204 −159 * 135 −133

ΔET (gm−2 h−1) * * * * * * * * *

ΔNEP (mgCm−2 h−1) 54 93 −48 * 159 −40 * 121 −44
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mean VPD has significant negative relationships with
pWUE and eWUE at our site. At the daily timescale,
the positive correlation of diffuse fraction (driven
principally by variations in cloudiness) and pWUE is
likely a function of direct and indirect controls (Knohl
and Baldocchi 2008, Still et al 2009). Increased cloud
cover lowers ET by reducing VPD and net radiation.
Furthermore, there is less self-shading within the
canopy on cloudy days because of the higher propor-
tion of diffuse or reflected radiation. Therefore,
needles lower in the canopy may actually have access
to higher photoactive radiation (PAR) than on cloud-
free days, even though total radiation at the top is
decreased, as the needle-leaf canopy is highly efficient
in utilizing diffuse and direct radiation for photo-
synthesis. In other words, higher light use efficiency
occurs in lower incident PAR days (Wharton et al
2009). Consequently, although photosynthetic rates
are lower at the canopy top, the rates increase at lower
levels of the canopy due to less shading, thereby
increasing overall canopy photosynthesis on cloudy
days (Rastogi et al 2018b). This is particularly true for
forests like Wind River where leaf area is high and
distributed in a complexmanner along the vertical axis
(Parker et al 2004).

When integrated to the monthly scale, the impor-
tance of VPD control is reduced and partly replaced by
the importance of CO2 concentration and air temper-
ature as controls. At our study site, CO2 concentration
can fluctuate by 40–60 ppm between spring and

summer. Relative to the growing-season mean of
∼380 ppm, this 10%–15% seasonal variation can
substantially affect photosynthesis, which responds
to CO2 non-linearly. Annually, water supply and
demand, and radiation conditions are relatively stable,
whereas photosynthetic potential is still not carbon-
saturated. Under such conditions, CO2 concentration
can have a strong positive correlation with all three
WUEmetrics over longer time scales.While it remains
unclear to what extent this forest is CO2 limited, our
results indicate that the long-term influence of CO2

fertilization in this ecosystem requires further invest-
igation. Furthermore, while the period of observation
in this study is relatively short, our observations of
decadal-scale changes in WUE are in agreement with
Keenan et al (2013), that the strongly declining Gc sug-
gests a substantial CO2 impact, along with increasing
VPD. The relatively stable water content in deep soil
layers (Warren et al 2005), time lags between precipita-
tion and water storage, and the ability of large trees to
extract deep soil water with deep roots, likely limited
the influence of SWC onmonthlyWUE. Although soil
moisture has been widely shown to be correlated with
pWUE on an annual basis (Beer et al 2009, Yang et al
2013), our results suggest that atmospheric CO2 con-
centration is the most important indicator to predict
long-term trends in pWUE, as well as the other two
WUE metrics at this site. Furthermore, air temper-
ature and VPD are highly correlated during the grow-
ing season and temperatures are the primary driver of

Figure 5. Importance of environmental variables in determining photosynthetic water-use efficiency (pWUE) at three time scales:
half-hourly (a), (b), daily (c), (d) andmonthly (e), (f). Importance is inferred fromboosted regression tree (a), (c), (e) andmultiple
linear regression (b), (d), (f). The black bar on top of each gray bar represents the 95% confidence interval of the relative importance of
each variable.

8

Environ. Res. Lett. 14 (2019) 074029



inter-annual variation in tree-ring carbon isotope dis-
crimination for other forests of the Pacific Northwest
(PNW) (Ratcliff et al 2018). Therefore, a combination
of air temperature (and thus VPD) and CO2 con-
centration can capture a large proportion of the varia-
tions in WUE at long time scales (e.g. decades or
centuries), at least for PNWold-growth forests.

Howdoes an old-growth coniferous forest respond
to drought?
Despite the Pacific Northwest being known for abun-
dant winter and spring precipitation, droughts can span
cool and warm seasons and thereby impose major
physiological stress on trees across the region (Franklin
and Waring 1980). The combination of high VPD
and air temperature appears to be a major factor that
limits GPP and thus reduces ecosystem-scale WUE.
Although increased sensitivity to a shortfall in spring
precipitation has been recorded elsewhere by tree
growth responses to drought timing (D’orangeville
et al 2018), our study did not find a high correlation
between spring SPI with carbon and water fluxes,
likely due to the time lags in precipitation and soil
water content. The insensitivity of ET to drought
severity (as represented by SPI) is likely due to the
ability of the mature trees to access water in deep soil
layers. As indicated by Warren et al (2005), roots at
depths greater than 60 cm accounted for 50%–80% of
water uptake under drying conditions especially dur-
ing the dryest part of the growing season. Therefore,
plant transpiration remains relatively stable in sum-
mer because large trees can extract water from
progressively deeper soil layers (e.g. down to at least
2 m) where soil water content remains fairly constant
(Domec et al 2004, Meinzer et al 2007). Our data
indicate that when air temperatures are anomalously
high during a dry summer, as in 2015, decreased GPP
is further exacerbated by stomatal closure in response

to higher VPD and also likely by downregulation of
enzymes (Wohlfahrt et al 2018), resulting in substan-
tially lower pWUE. This finding agrees with the
wavelet analysis by Wagle et al (2016), which indicates
that carbon uptake (NEP or GPP) is constrained more
than ET by VPD through restriction of stomatal
regulation. This finding also echoes Reichstein et al
(2002, 2007), which documents a decrease in WUE at
European evergreen needleleaf forests during drier
years. Meanwhile, high temperatures decrease net
carbon uptake and therefore eWUE, due to an increase
in ecosystem respiration (Valentini et al 1995, Atkin
et al 2007, Guerrieri et al 2016).

Climate projections for the PNW (Mote and
Salathé, 2010, Mote et al 2014), predict a hotter and
drier climate, with less water coming from the winter
snowpack (Mote, 2006) and earlier spring snowmelt
(Stewart et al 2005, Abatzoglou et al 2014). Moreover,
closed canopy forests of this region tend to have lower
snowpack (Dickerson-Lange et al 2017). Therefore, it
is expected that summer water stress may have a large
impact on carbon fluxes of PNW forests in the future.
Currently, relatively stable moisture in deep soil layers
supports the water demands of tall trees atWind River
during the largely rain-free summer months. How-
ever, maintenance of the deep soil water storage may
be reduced during a long-term drying climate. Pro-
longed and severe drought events could eventually
result in tree mortality (Mueller et al 2005, Anderegg
et al 2013, 2014), with a particular risk of xylem
hydraulic failure in old trees (Adams et al 2017).
Although drought has not caused substantial tree
mortality at our study site, the on-going drying trend
may slow the expected transition to dominance by
western hemlock, which prefers wetter environments
thanDouglas-fir. That in turnmay feedback to ecosys-
tem-scaleWUE.

Figure 6.PhotosyntheticWUE (pWUE) versus cloudiness (left) and ecosystemWUE (eWUE) versus cloudiness (right). Values are
from 8 am to 4 pmduring the full growing season (March–September) of 2015. Cloudiness is represented by the ratio of diffuse
radiation to total shortwave radiation (r=Rdiff/Rshort).We categorize days as sunny (r<=0.2), partly cloudy (0.2<r<0.6), and
cloudy (r>=0.6). The solid black line represents the linear regression ofWUEon cloudiness. For this calculationwe ignored the
effects of diurnal and seasonal solar geometry on the diffuse radiation fraction (Cheng et al 2015).
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Conclusion

Ecosystem-scale water-use efficiency (WUE) estimates
derived from eddy covariance flux measurements
displayed an overall increase between 1998 and 2015 at
an old-growth coniferous forest site in the PNW.
However, between 2008 and 2015 a proportionally
greater reduction in GPP relative to ET slowed the rate
of increase in WUE compared to the earlier portion of
the record. The strength of associations among
individual meteorological variables and WUE varied
according to the scale of temporal aggregation. In
general, VPD and air temperature control WUE at
half-hourly and daily time scales, while atmospheric
CO2 concentration is identified as the most important
indicator of monthly WUE. All metrics of WUE show
a weak correlation to SPI, while carbon fluxes depend
strongly on the combined effect of different climatic
factors. The observed patterns and controls on forest
WUEhave implications for predicting adaptive adjust-
ment of forest physiology in response to climate
change and rising atmospheric CO2 concentrations.
Further efforts are needed to monitor the effect of
microclimate on WUE across different canopy layers
to separate responses of different species to climate
anomalies, such as drought.
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