122 research outputs found

    Effect of temperature on the viscoelastic properties of nano-confined liquid mixtures

    Get PDF
    The behaviour of fluids confined in nanoscale gaps plays a central role in molecular science and nanofluidics, with applications ranging from biological function to multiscale printing, osmosis and filtration, lab-on-chip technology and friction reduction. Here atomic force microscopy is used to shear five different mixtures of hexadecane and squalane confined between the tip apex and atomically flat graphite. The shearing amplitudes are typically < 2 nm, hence reflecting highly localised information at the interface. The evolution of each mixture’s viscoelastic properties is studied as a function of temperature, between 20 °C and 100 °C. The results, complemented by sub-nanometre resolution images of the interface, show that spatial organisation of the liquid molecules at the surface of graphite largely dominates the measurements. Squalane presents a higher affinity for the surface and forms a robust self-assembled layer in all mixtures. This results in a step-like change of the viscous and elastic response of the confined liquid as the confining pressure increases. In contrast, measurements in pure hexadecane show a continuous and linear increase in the apparent viscosity with pressure at all temperatures. This is interpreted as a more fragile interfacial layer and images show that it can be completely removed at high temperatures. Depending on the mixture composition, measurements can be strongly location-dependent which suggests molecular clustering and nanoscale phase separation at the interface

    Nanoscale probing of local dielectric changes at the interface between solids and aqueous saline solutions

    Get PDF
    The mobility of dissolved ions and charged molecules at interfaces underpins countless processes in science and technology. Experimentally, this is typically measured from the averaged response of the charges to an electrical potential. High-resolution Atomic Force Microscopy (AFM) can image single adsorbed ions and molecules at solid–liquid interfaces, but probing the associated dynamics remains highly challenging. One possible strategy is to investigate the response of the species of interest to a highly localized AC electric field in an approach analogous to dielectric spectroscopy. The dielectric force experienced by the AFM tip apex is modulated by the dielectric properties of the sample probed, itself sensitive to the mobilities of solvated charges and dipoles. Previous work successfully used this approach to quantify the dielectric constant of thin samples, but with limited spatial resolution. Here we propose a strategy to simultaneously map the nanoscale topography and local dielectric variations across a range of interfaces by conducting high-resolution AFM imaging concomitantly with electrical AC measurements in a multifrequency approach. The strategy is tested over a 500 MHz bandwidth in pure liquids with different dielectric constants and in saline aqueous solutions. In liquids with higher dielectric constants, the system behaves as inductive–resistive–capacitive but the adjunction of ions removes the inductive resonances and precludes measurements at higher frequencies. High-resolution imaging is demonstrated over single graphene oxide (GrO) flakes with simultaneous but decoupled dielectric measurements. The dielectric constant is consistent and reproducible across liquids, except at higher salt concentrations where frequency-dependent effects occur. The results suggest the strategy is suitable for nanometre-level mapping of the dielectric properties of solid–liquid interfaces, but more work is needed to fully understand the different physical effects underpinning the measurements

    Water-induced correlation between single ions imaged at the solid–liquid interface

    Get PDF
    When immersed into ​water, most solids develop a surface charge, which is neutralized by an accumulation of dissolved counterions at the interface. Although the density distribution of counterions perpendicular to the interface obeys well-established theories, little is known about counterions’ lateral organization at the surface of the solid. Here we show, by using atomic force microscopy and computer simulations, that single hydrated metal ions can spontaneously form ordered structures at the surface of homogeneous solids in aqueous solutions. The structures are laterally stabilized only by ​water molecules with no need for specific interactions between the surface and the ions. The mechanism, studied here for several systems, is controlled by the hydration landscape of both the surface and the adsorbed ions. The existence of discrete ion domains could play an important role in interfacial phenomena such as charge transfer, crystal growth, nanoscale self-assembly and colloidal stability

    Simultaneous quantification of Young’s modulus and dispersion forces with nanoscale spatial resolution

    Get PDF
    Many advances in polymers and layered materials rely on a precise understanding of the local interactions between adjacent molecular or atomic layers. Quantifying dispersion forces at the nanoscale is particularly challenging with existing methods often time consuming, destructive, relying on surface averaging or requiring bespoke equipment. Here, we present a non-invasive method able to quantify the local mechanical and dispersion properties of a given sample with nanometer lateral precision. The method, based on atomic force microscopy (AFM), uses the frequency shift of a vibrating AFM cantilever in combination with established contact mechanics models to simultaneously derive the Hamaker constant and the effective Young’s modulus at a given sample location. The derived Hamaker constant and Young’s modulus represent an average over a small (typically <100) number of molecules or atoms. The oscillation amplitude of the vibrating AFM probe is used to select the length-scale of the features to analyse, with small vibrations able to resolve the contribution of sub-nanometric defects and large ones exploring effectively homogeneous areas. The accuracy of the method is validated on a range of 2D materials in air and water as well as on polymer thin films. We also provide the first experimental measurements of the Hamaker constant of HBN, MoT2, WSe2 and polymer films, verifying theoretical predictions and computer simulations. The simplicity and robustness of the method, implemented with a commercial AFM, may support a broad range of technological applications in the growing field of polymers and nanostructured materials where a fine control of the van der Waals interactions is crucial to tune their properties

    Water and ions in electrified silica nano-pores: a molecular dynamics study

    Get PDF
    Solid–liquid interfaces (SLIs) are ubiquitous in science and technology from the development of energy storage devices to the chemical reactions occurring in the biological milieu. In systems involving aqueous saline solutions as the liquid, both the water and the ions are routinely exposed to an electric field, whether the field is externally applied, or originating from the natural surface charges of the solid. In the current study a molecular dynamics (MD) framework is developed to study the effect of an applied voltage on the behaviour of ionic solutions located in a ∼7 nm pore between two uncharged hydrophilic silica slabs. We systematically investigate the dielectric properties of the solution and the organisation of the water and ions as a function of salt concentration. In pure water, the interplay between interfacial hydrogen bonds and the applied field can induce a significant reorganisation of the water orientation and densification at the interface. In saline solutions, at low concentrations and voltages the interface dominates the whole system due to the extended Debye length resulting in a dielectric constant lower than that for the bulk solution. An increase in salt concentration or voltage brings about more localized interfacial effects resulting in dielectric properties closer to that of the bulk solution. This suggests the possibility of tailoring the system to achieve the desired dielectric properties. For example, at a specific salt concentration, interfacial effects can locally increase the dielectric constant, something that could be exploited for energy storage

    Ions modulate stress-induced nano-texture in supported fluid lipid bilayers

    Get PDF
    Most plasma membranes comprise a large number of different molecules including lipids and proteins. In the standard fluid mosaic model, the membrane function is effected by proteins whereas lipids are largely passive and serve solely in the membrane cohesion. Here we show, using supported 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid bilayers in different saline solutions, that ions can locally induce ordering of the lipid molecules within the otherwise fluid bilayer when the latter is supported. This nanoordering exhibits a characteristic length scale of ∼20 nm, and manifests itself clearly when mechanical stress is applied to the membrane. Atomic force microscopy (AFM) measurements in aqueous solutions containing NaCl, KCl, CaCl2, and Tris buffer show that the magnitude of the effect is strongly ion-specific, with Ca2+ and Tris, respectively, promoting and reducing stress-induced nanotexturing of the membrane. The AFM results are complemented by fluorescence recovery after photobleaching experiments, which reveal an inverse correlation between the tendency for molecular nanoordering and the diffusion coefficient within the bilayer. Control AFM experiments on other lipids and at different temperatures support the hypothesis that the nanotexturing is induced by reversible, localized gel-like solidification of the membrane. These results suggest that supported fluid phospholipid bilayers are not homogenous at the nanoscale, but specific ions are able to locally alter molecular organization and mobility, and spatially modulate the membrane’s properties on a length scale of ∼20 nm. To illustrate this point, AFM was used to follow the adsorption of the membrane-penetrating antimicrobial peptide Temporin L in different solutions. The results confirm that the peptides do not absorb randomly, but follow the ion-induced spatial modulation of the membrane. Our results suggest that ionic effects have a significant impact for passively modulating the local properties of biological membranes, when in contact with a support such as the cytoskeleton

    Near surface properties of mixtures of propylammonium nitrate with n-alkanols 1. Nanostructure

    Get PDF
    In situ amplitude modulated-atomic force microscopy (AM-AFM) has been used to probe the nanostructure of mixtures of propylammonium nitrate (PAN) with n-alkanols near a mica surface. PAN is a protic ionic liquid (IL) which has a bicontinuous sponge-like nanostructure of polar and apolar domains in the bulk, which becomes flatter near a solid surface. Mixtures of PAN with 1-butanol, 1-octanol, and 1-dodecanol at 10–70 vol% n-alkanol have been examined, along with each pure n-alkanol, to reveal the effect of composition and n-alkanol chain length. At low concentrations the butanol simply swells the PAN near-surface nanostructure, but at higher concentrations the nanostructure fragments. Octanol and dodecanol first lower the preferred curvature of the PAN near-surface nanostructure because, unlike n-butanol, their alkyl chains are too long to be accommodated alongside the PAN cations. At higher concentrations, octanol and dodecanol self-assemble into n-alkanol rich aggregates in a PAN rich matrix. The concentration at which aggregation first becomes apparent decreases with n-alkanol chain length

    Towards local tracking of solvated metal ions at solid-liquid interfaces

    Get PDF
    The dynamics of individual solvated ions near solid surfaces is the driving force behind numerous interfacial processes, from electrochemical reactions to charge storage, mineral growth, biosignalling and bioenergetics. The precise system behaviour is delicately dependent on the atomistic and molecular details of the interface and remains difficult to capture with generalisable, analytical models. Reported dynamics can vary by orders of magnitude depending on microscopic details of the solvent, ions and/or surface chemistry. Experimentally, tracking single solvated ions as they move at or along interfaces remains highly challenging. This is, to some extent, offset by simulations that can provide precise atomistic insights, but usually over limited timescales. The aim of this review is to provide an overview of this highly interdisciplinary field, its achievements and remaining challenges, reviewing both experimental and computational results. Starting from the well accepted continuum description of dissolved ions at solid-liquid interfaces, we outline the challenges of deriving local information, illustrating the discussion with a range of selected studies. We explore the challenges associated with simultaneously achieving the spatial and temporal resolution needed to gain meaningful, yet contextual insights of single ions’ dynamics. Based on the current studies, we anticipate the future developments in the field, outlining remaining challenges and opportunities

    The interplay between apparent viscosity and wettability in nanoconfined water

    Get PDF
    Understanding and manipulating fluids at the nanoscale is a matter of growing scientific and technological interest. Here we show that the viscous shear forces in nanoconfined water can be orders of magnitudes larger than in bulk water if the confining surfaces are hydrophilic, whereas they greatly decrease when the surfaces are increasingly hydrophobic. This decrease of viscous forces is quantitatively explained with a simple model that includes the slip velocity at the water surface interface. The same effect is observed in the energy dissipated by a tip vibrating in water perpendicularly to a surface. Comparison of the experimental data with the model shows that interfacial viscous forces and compressive dissipation in nanoconfined water can decrease up to two orders of magnitude due to slippage. These results offer a new understanding of interfacial fluids, which can be used to control flow at the nanoscale
    • …
    corecore