1,557 research outputs found

    Image processing for traceability: a system prototype for the Southern Rock Lobster (SRL) supply chain

    Get PDF
    This paper describes how conventional image processing techniques can be applied to the grading of Southern Rock Lobsters (SRL) to produce a high quality data layer which could be an input into product traceability. The research is part of a broader investigation into designing a low-cost biometric identification solution for use along the entire lobster supply chain. In approaching the image processing for lobster grading a key consideration is to develop a system capable of using low cost consumer grade cameras readily available in mobile phones. The results confirm that by combining a number of common techniques in computer vision it is possible to capture and process a set of valuable attributes from sampled lobster image including color, length, weight, legs and sex. By combining this image profile with other pre-existing data on catch location and landing port each lobster can be verifiably tracked along the supply chain journey to markets in China. The image processing research results achieved in the laboratory show high accuracy in measuring lobster carapace length that is vital for weight conversion calculations. The results also demonstrate the capability to obtain reliable values for average color, tail shape and number of legs on a lobster used in grading classifications. The findings are a major first step in the development of individual lobster biometric identification and will directly contribute to automating lobster grading in this valuable Australian fishery

    Development of an Alumni Feedback System for Curriculum Improvement in Building Technology Courses

    Get PDF
    In this fast-paced world, the needs of the world of work and the global market is changing at an unprecedented speed. Therefore, institutions of higher learning need to constantly adjust their programs to fit into these needs. The study aimed to develop an alumni feedback system for curriculum improvement in Building Technology courses. The study highlighted the benefits of an alumni feedback system compared to a manual questionnaire method or other methods of curriculum improvement. The web-based system was designed through use case and system block diagrams. Thereafter, the webbased system was programmed using HTML, CSS, MySQL and PHP. Screenshots of the web-based system was presented. The alumni feedback system comprises of background information of the alumni, perception test on the impact of the course content and a review of the course content for curriculum improvement. Since this is a preliminary study, future studies would be based on analyzing data obtained in the database in terms of the numerical and text data. This study can be adapted for other programmes for the purpose of curriculum improvement

    Static and vibration analysis of functionally graded beams using refined shear deformation theory

    Get PDF
    Static and vibration analysis of functionally graded beams using refined shear deformation theory is presented. The developed theory, which does not require shear correction factor, accounts for shear deformation effect and coupling coming from the material anisotropy. Governing equations of motion are derived from the Hamilton's principle. The resulting coupling is referred to as triply coupled axial-flexural response. A two-noded Hermite-cubic element with five degree-of-freedom per node is developed to solve the problem. Numerical results are obtained for functionally graded beams with simply-supported, cantilever-free and clamped-clamped boundary conditions to investigate effects of the power-law exponent and modulus ratio on the displacements, natural frequencies and corresponding mode shapes

    Quantized Nambu-Poisson Manifolds in a 3-Lie Algebra Reduced Model

    Full text link
    We consider dimensional reduction of the Bagger-Lambert-Gustavsson theory to a zero-dimensional 3-Lie algebra model and construct various stable solutions corresponding to quantized Nambu-Poisson manifolds. A recently proposed Higgs mechanism reduces this model to the IKKT matrix model. We find that in the strong coupling limit, our solutions correspond to ordinary noncommutative spaces arising as stable solutions in the IKKT model with D-brane backgrounds. In particular, this happens for S^3, R^3 and five-dimensional Neveu-Schwarz Hpp-waves. We expand our model around these backgrounds and find effective noncommutative field theories with complicated interactions involving higher-derivative terms. We also describe the relation of our reduced model to a cubic supermatrix model based on an osp(1|32) supersymmetry algebra.Comment: 22 page

    MMP28 (epilysin) as a novel promoter of invasion and metastasis in gastric cancer

    Get PDF
    Background\ud The purpose of this study was to investigate invasion and metastasis related genes in gastric cancer.\ud \ud Methods\ud The transwell migration assay was used to select a highly invasive sub-line from minimally invasive parent gastric cancer cells, and gene expression was compared using a microarray. MMP28 upregulation was confirmed using qRT-PCR. MMP28 immunohistochemistry was performed in normal and gastric cancer specimens. Invasiveness and tumor formation of stable cells overexpressing MMP28 were tested in vitro and in vivo.\ud \ud Results\ud MMP28 was overexpressed in the highly invasive sub-cell line. Immunohistochemistry revealed MMP28 expression was markedly increased in gastric carcinoma relative to normal epithelia, and was significantly associated with depth of tumor invasion, lymph node metastasis and poorer overall survival. Ectopic expression of MMP28 indicated MMP28 promoted tumor cell invasion in vitro and increased gastric carcinoma metastasis in vivo.\ud \ud Conclusions\ud This study indicates MMP28 is frequently overexpressed during progression of gastric carcinoma, and contributes to tumor cell invasion and metastasis. MMP28 may be a novel therapeutic target for prevention and treatment of metastases in gastric cancer

    miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity

    Get PDF
    miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity

    MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models

    Get PDF
    Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval are freely available from https://github.com/PiotrZakrzewski/MetEv​al/downloads

    Targeting multiple effector pathways in pancreatic ductal adenocarcinoma with a g-quadruplex-binding small molecule

    Get PDF
    Human pancreatic ductal adenocarcinoma (PDAC) involves the dysregulation of multiple signaling pathways. A novel approach to the treatment of PDAC is described, involving the targeting of cancer genes in PDAC pathways having over-representation of G-quadruplexes, using the trisubstituted naphthalene diimide quadruplex-binding compound 2,7-bis(3-morpholinopropyl)-4-((2-(pyrrolidin-1-yl)ethyl)amino)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (CM03). This compound has been designed by computer modeling, is a potent inhibitor of cell growth in PDAC cell lines, and has anticancer activity in PDAC models, with a superior profile compared to gemcitabine, a commonly used therapy. Whole-transcriptome RNA-seq methodology has been used to analyze the effects of this quadruplex-binding small molecule on global gene expression. This has revealed the down-regulation of a large number of genes, rich in putative quadruplex elements and involved in essential pathways of PDAC survival, metastasis, and drug resistance. The changes produced by CM03 represent a global response to the complexity of human PDAC and may be applicable to other currently hard-to-treat cancers
    • …
    corecore