1,878 research outputs found
Efficient estimation of energy transfer efficiency in light-harvesting complexes
The fundamental physical mechanisms of energy transfer in photosynthetic
complexes is not yet fully understood. In particular, the degree of efficiency
or sensitivity of these systems for energy transfer is not known given their
non-perturbative and non-Markovian interactions with proteins backbone and
surrounding photonic and phononic environments. One major problem in studying
light-harvesting complexes has been the lack of an efficient method for
simulation of their dynamics in biological environments. To this end, here we
revisit the second-order time-convolution (TC2) master equation and examine its
reliability beyond extreme Markovian and perturbative limits. In particular, we
present a derivation of TC2 without making the usual weak system-bath coupling
assumption. Using this equation, we explore the long time behaviour of exciton
dynamics of Fenna-Matthews-Olson (FMO) protein complex. Moreover, we introduce
a constructive error analysis to estimate the accuracy of TC2 equation in
calculating energy transfer efficiency, exhibiting reliable performance for
environments with weak and intermediate memory and strength. Furthermore, we
numerically show that energy transfer efficiency is optimal and robust for the
FMO protein complex of green sulphur bacteria with respect to variations in
reorganization energy and bath correlation time-scales.Comment: 16 pages, 9 figures, modified version, updated appendices and
reference lis
Classical simulation of measurement-based quantum computation on higher-genus surface-code states
We consider the efficiency of classically simulating measurement-based
quantum computation on surface-code states. We devise a method for calculating
the elements of the probability distribution for the classical output of the
quantum computation. The operational cost of this method is polynomial in the
size of the surface-code state, but in the worst case scales as in the
genus of the surface embedding the code. However, there are states in the
code space for which the simulation becomes efficient. In general, the
simulation cost is exponential in the entanglement contained in a certain
effective state, capturing the encoded state, the encoding and the local
post-measurement states. The same efficiencies hold, with additional
assumptions on the temporal order of measurements and on the tessellations of
the code surfaces, for the harder task of sampling from the distribution of the
computational output.Comment: 21 pages, 13 figure
Dynamical correlations in electronic transport through a system of coupled quantum dots
Current auto- and cross-correlations are studied in a system of two
capacitively coupled quantum dots. We are interested in a role of Coulomb
interaction in dynamical correlations, which occur outside the Coulomb blockade
region (for high bias). After decomposition of the current correlation
functions into contributions between individual tunneling events, we can show
which of them are relevant and lead to sub-/supper-Poissonian shot noise and
negative/positive cross-correlations. The results are differentiated for a weak
and strong inter-dot coupling. Interesting results are for the strong coupling
case when electron transfer in one of the channel is strongly correlated with
charge drag in the second channel. We show that cross-correlations are
non-monotonic functions of bias voltage and they are in general negative
(except some cases with asymmetric tunnel resistances). This is effect of local
potential fluctuations correlated by Coulomb interaction, which mimics the
Pauli exclusion principle
Can we estimate the impact of small targeted dietary changes on human health and environmental sustainability?
A recent analysis by Stylianou et al. (2021) estimated the impact of small dietary changes in the consumption of individual foods on human health and the environment, expressed as minutes of healthy life lost or gained daily combined with dietary carbon footprints. While an appealing concept given its simplistic interpretation, we aim to draw the attention of nLCA practitioners and developers to the significant limitations and uncertainties of this analysis, based on existing evidence. Stylianou's approach produces results that fail to recognize the importance of essential nutrient density and the risks associated with ultra-processed foods, added sugar, and refined starches. The novel impact assessment undoubtedly brings a new perspective to the growing field of nutritional Life Cycle Assessment. However, the authors neglect numerous methodological limitations, fail to direct the readers' attention to (mis)interpretation risks, and draw highly definitive recommendations aiming to directly influence consumer choices and policymaking. Due to extensive data limitations and associated uncertainties in extant databases (both environmental and nutritional), we recommend caution in the use of this (or any other) food classification system to inform consumer behavior, front-of-package labelling, policies, and programs
Architecture, structural and tectonic significance of the Seagap fault (offshore Tanzania) in the framework of the East African Rift
The Southeastern portion of the East African Rift System reactivates Mesozoic transform faults marking the separation of Madagascar from Africa in the Western Indian Ocean. Earlier studies noted the reactivation of the Davie Fracture Zone in oceanic lithosphere as a seismically active extensional fault, and new 3D seismic reflection data and exploration wells provide unprecedented detail on the kinematics of the sub-parallel Seagap fault zone in continental/transitional crust landward of the ocean-continent transition. We reconstruct the evolution of the seismically active Seagap fault zone, a 400-km-long crustal structure affecting the Tanzania margin, from the late Eocene to the present day. The Seagap fault zone is represented by large-scale localized structures affecting the seafloor and displaying growth geometries across most of the Miocene sediments. The continuous tectonic activity evident by our seismic mapping, as well as 2D deep seismic data from literature, suggests that from the Middle-Late Jurassic until 125 Ma, the Seagap fault acted as a regional structure parallel to, and coeval with, the dextral Davie Fracture Zone. The Seagap fault then remained active after the cessation of both seafloor spreading in the Somali basin and strike-slip activity on the Davie Fracture Zone, till nowaday. Its architecture is structurally expressed through the sequence of releasing and restraining bends dating back at least to the early Neogene. Seismic sections and horizon maps indicate that those restraining bends are generated by strike-slip reactivation of Cretaceous structures till the Miocene. Finally based on the interpretation of edge-enhanced reflection seismic surfaces and seafloor data, we shows that, by the late Neogene, the Seagap fault zone switched to normal fault behaviour. We discuss the Seagap fault's geological and kinematic significance through time and its current role within the microplate system in the framework of the East African rift, as well as implications for the evolution and re-activation of structures along sheared margins. The newly integrated datasets reveal the polyphase deformation of this margin, highlighting its complex evolution and the implications for depositional fairways and structural trap and seal changes through time, as well as potential hazards
Influence of supramolecular forces on the linear viscoelasticity of gluten
Stress relaxation behavior of hydrated gluten networks was investigated by means of rheometry combined with μ-computed tomography (μ-CT) imaging. Stress relaxation behavior was followed over a wide temperature range (0–70 °C). Modulation of intermolecular bonds was achieved with urea or ascorbic acid in an effort to elucidate the presiding intermolecular interactions over gluten network relaxation. Master curves of viscoelasticity were constructed, and relaxation spectra were computed revealing three relaxation regimes for all samples. Relaxation commences with a well-defined short-time regime where Rouse-like modes dominate, followed by a power law region displaying continuous relaxation concluding in a terminal zone. In the latter zone, poroelastic relaxation due to water migration in the nanoporous structure of the network also contributes to the stress relief in the material. Hydrogen bonding between adjacent protein chains was identified as the determinant force that influences the relaxation of the networks. Changes in intermolecular interactions also resulted in changes in microstructure of the material that was also linked to the relaxation behavior of the networks
Charge fluctuations and feedback effect in shot noise in a Y-terminal system
We investigate a dynamical Coulomb blockade effect and its role in the
enhancement of current-current correlations in a three-terminal device with a
multilevel splitter, as well as with two quantum dots. Spectral decomposition
analysis shows that in the Y-terminal system with a two level ideal splitter,
charge fluctuations at a level with a lowest outgoing tunneling rate are
responsible for a super-Poissonian shot noise and positive cross-correlations.
Interestingly, for larger source-drain voltages, electrons are transferred as
independent particles, when three levels participate in transport, and double
occupancy is allowed. We can explain compensation of the current correlations
as the interplay between different bunching and antibunching processes by
performing a spectral decomposition of the correlation functions for partial
currents flowing through various levels. In the system with two quantum dots
acting as a splitter, a long range feedback effect of fluctuating potentials
leads to the dynamical Coulomb blockade and an enhancement of shot noise.Comment: 15 pages, 8 figure
Large-scale mass wasting in the western Indian Ocean constrains onset of East African rifting
Faulting and earthquakes occur extensively along the flanks of the East African Rift System, including an offshore branch in the western Indian Ocean, resulting in remobilization of sediment in the form of landslides. To date, constraints on the occurrence of submarine landslides at margin scale are lacking, leaving unanswered a link between rifting and slope instability. Here, we show the first overview of landslide deposits in the post-Eocene stratigraphy of the Tanzania margin and we present the discovery of one of the biggest landslides on Earth: the Mafia mega-slide. The emplacement of multiple landslides, including the Mafia mega-slide, during the early-mid Miocene is coeval with cratonic rifting in Tanzania, indicating that plateau uplift and rifting in East Africa triggered large and potentially tsunamigenic landslides likely through earthquake activity and enhanced sediment supply. This study is a first step to evaluate the risk associated with submarine landslides in the region
- …