117 research outputs found

    Mechanical Strain Promotes Oligodendrocyte Differentiation by Global Changes of Gene Expression.

    Get PDF
    Differentiation of oligodendrocyte progenitor cells (OPC) to oligodendrocytes and subsequent axon myelination are critical steps in vertebrate central nervous system (CNS) development and regeneration. Growing evidence supports the significance of mechanical factors in oligodendrocyte biology. Here, we explore the effect of mechanical strains within physiological range on OPC proliferation and differentiation, and strain-associated changes in chromatin structure, epigenetics, and gene expression. Sustained tensile strain of 10-15% inhibited OPC proliferation and promoted differentiation into oligodendrocytes. This response to strain required specific interactions of OPCs with extracellular matrix ligands. Applied strain induced changes in nuclear shape, chromatin organization, and resulted in enhanced histone deacetylation, consistent with increased oligodendrocyte differentiation. This response was concurrent with increased mRNA levels of the epigenetic modifier histone deacetylase Hdac11. Inhibition of HDAC proteins eliminated the strain-mediated increase of OPC differentiation, demonstrating a role of HDACs in mechanotransduction of strain to chromatin. RNA sequencing revealed global changes in gene expression associated with strain. Specifically, expression of multiple genes associated with oligodendrocyte differentiation and axon-oligodendrocyte interactions was increased, including cell surface ligands (Ncam, ephrins), cyto- and nucleo-skeleton genes (Fyn, actinins, myosin, nesprin, Sun1), transcription factors (Sox10, Zfp191, Nkx2.2), and myelin genes (Cnp, Plp, Mag). These findings show how mechanical strain can be transmitted to the nucleus to promote oligodendrocyte differentiation, and identify the global landscape of signaling pathways involved in mechanotransduction. These data provide a source of potential new therapeutic avenues to enhance OPC differentiation in vivo.We gratefully acknowledge funding from the National Multiple Sclerosis Society (RG4855A1/1), the Human Frontiers Science Program (RGP0015/2009-C), and the National Research Foundation of Singapore through the Singapore-MIT Alliance for Research and Technology (SMART), BioSystems and Micromechanics (BioSyM) interdisciplinary research group

    Time-action and patient experience analyses of locally advanced cervical cancer brachytherapy

    Get PDF
    BACKGROUND AND PURPOSE: Although MRI-based image guided adaptive brachytherapy (IGABT) for locally advanced cervical cancer (LACC) has resulted in favorable outcomes, it can be logistically complex and time consuming compared to 2D image-based brachytherapy, and both physically and emotionally intensive for patients. This prospective study aims to perform time-action and patient experience analyses during IGABT to guide further improvements. MATERIALS AND METHODS: LACC patients treated with IGABT were included for the time-action (56 patients) and patient experience (29 patients) analyses. Times per treatment step were reported on a standardized form. For the patient experience analysis, a baseline health status was established with the EQ-5D-5L questionnaire and the perceived pain, anxiety and duration for each treatment step were assessed with the NRS-11. RESULTS: The median total procedure time from arrival until discharge was 530 (IQR: 480–565) minutes. Treatment planning (delineation, reconstruction, optimization) required the most time and took 175 (IQR: 145–195) minutes. Highest perceived pain was reported during applicator removal and treatment planning, anxiety during applicator removal, and duration during image acquisition and treatment planning. Perceived pain, anxiety and duration were correlated. Higher pre-treatment pain and anxiety scores were associated with higher perceived pain, anxiety and duration. CONCLUSION: This study highlights the complexity, duration and impact on patient experience of the current IGABT workflow. Patient reported pre-treatment pain and anxiety can help identify patients that may benefit from additional support. Research and implementation of measures aiming at shortening the overall procedure duration, which may include logistical, staffing and technological aspects, should be prioritized.</p
    corecore