1 research outputs found

    Towards improved 1-D settler modelling : calibration of the Bürger model and case study

    Get PDF
    Recently, Burger et al. (2011) developed a new 1-D SST model which allows for more realistic predictions of the sludge settling behaviour than traditional 1-D models used to date. However, the addition of a compression function in this new 1-D model complicates the model calibration. This study aims to report advances in the calibration of this novel 1-D model. Data of the evolution of the sludge blanket height during batch settling experiments were collected at different initial solids concentrations. Based on the linear slopes of the batch settling curves the hindered settling velocity functions by Vesilind (1968) and Takacs et al. (1991) were calibrated. Although both settling velocity functions gave a good fit to the experimental data, very large confidence intervals were found for the parameters of the settling velocity by Takacs. Global sensitivity analysis showed that it is not possible to find a unique set of parameter values for the settling function by Takacs based on experimental data of the hindered settling velocity. Subsequently, the calibrated Vesilind settling velocity was implemented in the 1-D model by Burger et al. (2011) and the parameters of the additional compression function were calibrated by fitting the model by Burger et al. (2011) to the batch settling curves. Simulation results showed that while the 1-D model by Takacs et al. (1991) underpredicted the experimental data of sludge blanket heights, the model by Burger et al. (2011) was able to predict the experimental data far more accurately. However, a global sensitivity analysis showed that no unique optimum for the combined set of hindered and compression parameters could be found
    corecore