2,064 research outputs found

    Synchronization transitions in ensembles of noisy oscillators with bi-harmonic coupling

    Full text link
    We describe synchronization transitions in an ensemble of globally coupled phase oscillators with a bi-harmonic coupling function, and two sources of disorder - diversity of intrinsic oscillatory frequencies and external independent noise. Based on the self-consistent formulation, we derive analytic solutions for different synchronous states. We report on various non-trivial transitions from incoherence to synchrony where possible scenarios include: simple supercritical transition (similar to classical Kuramoto model), subcritical transition with large area of bistability of incoherent and synchronous solutions, and also appearance of symmetric two-cluster solution which can coexist with regular synchronous state. Remarkably, we show that the interplay between relatively small white noise and finite-size fluctuations can lead to metastable asynchronous solution

    Explosive Synchronization is Discontinuous

    Full text link
    Spontaneous explosive is an abrupt transition to collective behavior taking place in heterogeneous networks when the frequencies of the nodes are positively correlated to the node degree. This explosive transition was conjectured to be discontinuous. Indeed, numerical investigations reveal a hysteresis behavior associated with the transition. Here, we analyze explosive synchronization in star graphs. We show that in the thermodynamic limit the transition to (and out) collective behavior is indeed discontinuous. The discontinuous nature of the transition is related to the nonlinear behavior of the order parameter, which in the thermodynamic limit exhibits multiple fixed points. Moreover, we unravel the hysteresis behavior in terms of the graph parameters. Our numerical results show that finite size graphs are well described by our predictions

    Efficient slot labelling

    Full text link
    Slot labelling is an essential component of any dialogue system, aiming to find important arguments in every user turn. Common approaches involve large pre-trained language models (PLMs) like BERT or RoBERTa, but they face challenges such as high computational requirements and dependence on pre-training data. In this work, we propose a lightweight method which performs on par or better than the state-of-the-art PLM-based methods, while having almost 10x less trainable parameters. This makes it especially applicable for real-life industry scenarios

    Use of low orbital satellite communications systems for humanitarian programs

    Get PDF
    Communication and information exchange play a decisive role in progress and social development. However, in many parts of the world the communication infrastructure is inadequate and the capacity for on-line exchange of information may not exist. This is true of underdeveloped countries, remote and relatively inaccessible regions, sites of natural disasters, and of all cases where the resources needed to create complex communication systems are limited. The creation of an inexpensive space communications system to service such areas is therefore a high priority task. In addition to a relatively low-cost space segment, an inexpensive space communications systems requires a large number of ground terminals, which must be relatively inexpensive, energy efficient (using power generated by storage batteries, or solar arrays, etc.), small in size, and must not require highly expert maintenance. The ground terminals must be portable, and readily deployable. Communications satellites in geostationary orbit at altitudes of about 36,000 km are very expensive and require complex and expensive ground stations and launch vehicles. Given current technology, it is categorically impossible to develop inexpensive satellite systems with portable ground terminals using such satellites. To solve the problem of developing an inexpensive satellite communications system that can operate with relatively small ground stations, including portable terminals, we propose to use a system with satellites in low Earth orbit, at an altitude of 900-1500 km. Because low orbital satellites are much closer to the Earth than geostationary ones and require vastly less energy expenditure by the satellite and ground terminals for transmission of messages, a system using them is relatively inexpensive. Such a system could use portable ground terminals no more complex than ordinary mobile police radios

    Hub-driven remote synchronization in brain networks

    Get PDF

    Thermodynamics of network model fitting with spectral entropies

    Full text link
    An information theoretic approach inspired by quantum statistical mechanics was recently proposed as a means to optimize network models and to assess their likelihood against synthetic and real-world networks. Importantly, this method does not rely on specific topological features or network descriptors, but leverages entropy-based measures of network distance. Entertaining the analogy with thermodynamics, we provide a physical interpretation of model hyperparameters and propose analytical procedures for their estimate. These results enable the practical application of this novel and powerful framework to network model inference. We demonstrate this method in synthetic networks endowed with a modular structure, and in real-world brain connectivity networks.Comment: 11 pages, 3 figure
    • …
    corecore