33 research outputs found

    A standard photomap of ovarian nurse cell chromosomes and inversion polymorphism in Anopheles beklemishevi

    Get PDF
    Background Anopheles beklemishevi is a member of the Maculipennis group of malaria mosquitoes that has the most northern distribution among other members of the group. Although a cytogenetic map for the larval salivary gland chromosomes of this species has been developed, a high-quality standard cytogenetic photomap that enables genomics and population genetics studies of this mosquito at the adult stage is still lacking. Methods In this study, a cytogenetic map for the polytene chromosomes of An. beklemishevi from ovarian nurse cells was developed using high-resolution digital imaging from field collected mosquitoes. PCR-amplified DNA probes for fluorescence in situ hybridization (FISH) were designed based on the genome of An. atroparvus. The DNA probe obtained by microdissection procedures from the breakpoint region was labelled in a DOP-PCR reaction. Population analysis was performed on 371 specimens collected in 18 locations. Results We report the development of a high-quality standard photomap for the polytene chromosomes from ovarian nurse cells of An. beklemishevi. To confirm the suitability of the map for physical mapping, several PCR-amplified probes were mapped to the chromosomes of An. beklemishevi using FISH. In addition, we identified and mapped DNA probes to flanking regions of the breakpoints of two inversions on chromosome X of this species. Inversion polymorphism was determined in 13 geographically distant populations of An. beklemishevi. Four polymorphic inversions were detected. The positions of common chromosomal inversions were indicated on the map. Conclusions The study constructed a standard photomap for ovarian nurse cell chromosomes of An. beklemishevi and tested its suitability for physical genome mapping and population studies. Cytogenetic analysis determined inversion polymorphism in natural populations of An. beklemishevi related to this species’ adaptatio

    Phylogenomics revealed migration routes and adaptive radiation timing of holarctic malaria mosquito species of the Maculipennis group

    Get PDF
    BackgroundPhylogenetic analyses of closely related species of mosquitoes are important for better understanding the evolution of traits contributing to transmission of vector-borne diseases. Six out of 41 dominant malaria vectors of the genus Anopheles in the world belong to the Maculipennis Group, which is subdivided into two Nearctic subgroups (Freeborni and Quadrimaculatus) and one Palearctic (Maculipennis) subgroup. Although previous studies considered the Nearctic subgroups as ancestral, details about their relationship with the Palearctic subgroup, and their migration times and routes from North America to Eurasia remain controversial. The Palearctic species An. beklemishevi is currently included in the Nearctic Quadrimaculatus subgroup adding to the uncertainties in mosquito systematics.ResultsTo reconstruct historic relationships in the Maculipennis Group, we conducted a phylogenomic analysis of 11 Palearctic and 2 Nearctic species based on sequences of 1271 orthologous genes. The analysis indicated that the Palearctic species An. beklemishevi clusters together with other Eurasian species and represents a basal lineage among them. Also, An. beklemishevi is related more closely to An. freeborni, which inhabits the Western United States, rather than to An. quadrimaculatus, a species from the Eastern United States. The time-calibrated tree suggests a migration of mosquitoes in the Maculipennis Group from North America to Eurasia about 20-25 million years ago through the Bering Land Bridge. A Hybridcheck analysis demonstrated highly significant signatures of introgression events between allopatric species An. labranchiae and An. beklemishevi. The analysis also identified ancestral introgression events between An. sacharovi and its Nearctic relative An. freeborni despite their current geographic isolation. The reconstructed phylogeny suggests that vector competence and the ability to enter complete diapause during winter evolved independently in different lineages of the Maculipennis Group.ConclusionsOur phylogenomic analyses reveal migration routes and adaptive radiation timing of Holarctic malaria vectors and strongly support the inclusion of An. beklemishevi into the Maculipennis Subgroup. Detailed knowledge of the evolutionary history of the Maculipennis Subgroup provides a framework for examining the genomic changes related to ecological adaptation and susceptibility to human pathogens. These genomic variations may inform researchers about similar changes in the future providing insights into the patterns of disease transmission in Eurasia

    FEASIBILITY OF DEVELOPMENT OF AUTOMOBILE PASSENGER TRANSPORT IN THE NORTHERN REGIONS OF OUR COUNTRY

    Get PDF
    Automobile passenger transport is an integral part of the country’s unified transport system and ensures its territorial integrity and accessibility of its regions. Today, in our country, much attention is paid to the development of public transport, which can improve passenger traffic and partially reduce the movement of personal cars in the winter in the northern regions of our country. However, the solution to this problem requires a reliable, comfortable off-road bus fleet. And in the northern regions, this problem remains constantly acute due to the insufficient number of vehicles for transporting passengers, especially in winter. Purpose – To study the need for the development of road passenger transport in the northern regions of the Russian Federation. Method or methodology of the work: the article used a statistical method of analysis. Results: the feasibility of using automobile passenger transport in the northern regions of Russia was investigated, a possible design of a passenger bus was proposed depending on the climatic features of the northern regions. The scope of the results: conducting research aimed at creating new technologies in the development of road passenger transport, depending on the geographical location and climatic features of the country’s regions

    The Development of Cytogenetic Maps for Malaria Mosquitoes

    Get PDF
    Anopheline mosquitoes are important vectors of human malaria. Next-generation sequencing opens new opportunities for studies of mosquito genomes to uncover the genetic basis of a Plasmodium transmission. Physical mapping of genome sequences to polytene chromosomes significantly improves reference assemblies. High-resolution cytogenetic maps are essential for anchoring genome sequences to chromosomes as well as for studying breakpoints of chromosome rearrangements and chromatin protein localization. Here we describe a detailed pipeline for the development of high-resolution cytogenetic maps using polytene chromosomes of malaria mosquitoes. We apply this workflow to the refinement of the cytogenetic map developed for Anopheles beklemishevi

    Nematic liquid crystal alignment on subwavelength metal gratings

    No full text
    We have studied the alignment of a nematic liquid crystal (LC) material on aluminum subwavelength nanogratings as a function of the period, p, and the slit width to period ratio, w/p. A method, based on Fourier analysis of the transmittance spectra of the LC grating system, has been applied. We show that the gratings provide stable planar alignment only for shorter periods and narrower slits (p < 400 nm, w/p < 2/3). As these parameters increase, the homogeneous surface alignment changes to domains with different tilt angles or to spatially modulated alignment. We have also obtained a 90° twisted LC director distribution, implying sufficiently strong azimuthal LC anchoring at the grating surface

    Vertical Cylinder-to-Lamella Transition in Thin Block Copolymer Films Induced by In-Plane Electric Field

    No full text
    Morphological transition between hexagonal and lamellar patterns in thin polystyrene&ndash;block&ndash;poly(4-vinyl pyridine) films simultaneously exposed to a strong in-plane electric field and saturated solvent vapor is studied with atomic force and scanning electron microscopy. In these conditions, standing cylinders made of 4-vinyl pyridine blocks arrange into threads up to tens of microns long along the field direction and then partially merge into standing lamellas. In the course of rearrangement, the copolymer remains strongly segregated, with the minor component domains keeping connectivity between the film surfaces. The ordering tendency becomes more pronounced if the cylinders are doped with Au nanorods, which can increase their dielectric permittivity. Non-selective chloroform vapor works particularly well, though it causes partial etching of the indium tin oxide cathode. On the contrary, 1,4-dioxane vapor selective to polystyrene matrix does not allow for any morphological changes

    Partial-arm translocations in evolution of malaria mosquitoes revealed by high-coverage physical mapping of the Anopheles atroparvus genome

    Get PDF
    Abstract Background Malaria mosquitoes have had a remarkable stability in the number of chromosomes in their karyotype (2n = 6) during 100 million years of evolution. Moreover, autosomal arms were assumed to maintain their integrity even if their associations with each other changed via whole-arm translocations. Here we use high-coverage comparative physical genome mapping of three Anopheles species to test the extent of evolutionary conservation of chromosomal arms in malaria mosquitoes. Results In this study, we developed a physical genome map for Anopheles atroparvus, one of the dominant malaria vectors in Europe. Using fluorescence in situ hybridization (FISH) of DNA probes with the ovarian nurse cell polytene chromosomes and synteny comparison, we anchored 56 genomic scaffolds to the An. atroparvus chromosomes. The obtained physical map represents 89.6% of the An. atroparvus genome. This genome has the second highest mapping coverage among Anophelinae assemblies after An. albimanus, which has 98.2% of the genome assigned to its chromosomes. A comparison of the An. atroparvus, An. albimanus, and An. gambiae genomes identified partial-arm translocations between the autosomal arms that break down the integrity of chromosome elements in evolution affecting the structure of the genetic material in the pericentromeric regions. Unlike An. atroparvus and An. albimanus, all chromosome elements of An. gambiae are fully syntenic with chromosome elements of the putative ancestral Anopheles karyotype. We also detected nonrandom distribution of large conserved synteny blocks and confirmed a higher rate of inversion fixation in the X chromosome compared with autosomes. Conclusions Our study demonstrates the power of physical mapping for understanding the genome evolution in malaria mosquitoes. The results indicate that syntenic relationships among chromosome elements of Anopheles species have not been fully preserved because of multiple partial-arm translocations

    Non-Mechanical Multiplexed Beam-Steering Elements Based on Double-Sided Liquid Crystal Metasurfaces

    No full text
    We propose, optimize, fabricate and test beam-steering elements based on double-sided liquid-crystal (LC) metasurfaces allowing for diffractive and spectral multiplexing, and thus covering three different beam deflection directions each. While straightforward parallel design requires one diffractive beam-steering element per a direction determined by Bragg’s law, double-sided LC-metasurfaces are remarkably flexible and allow optimization for three operation modes at different applied voltages: zero-voltage mode with dominant +1 order red light and +2 order blue light diffraction; intermediate mode at 1.4–1.6 V voltage with dominant +1 order blue light diffraction; and transparent mode at 5 V voltage. We comprehensively study three such elements with 6, 8 and 10 micrometer periods and verify their capability of deflecting blue and red light beams with 40–70% efficiencies in nine target directions with 10 ms characteristic switching times

    Tissue-specific features of the X chromosome and nucleolus spatial dynamics in a malaria mosquito, <i>Anopheles atroparvus</i>

    No full text
    <div><p>Spatial organization of chromosome territories is important for maintenance of genomic stability and regulation of gene expression. Recent studies have shown tissue-specific features of chromosome attachments to the nuclear envelope in various organisms including malaria mosquitoes. However, other spatial characteristics of nucleus organization, like volume and shape of chromosome territories, have not been studied in <i>Anopheles</i>. We conducted a thorough analysis of tissue-specific features of the X chromosome and nucleolus volume and shape in follicular epithelium and nurse cells of the <i>Anopheles atroparvus</i> ovaries using a modern open-source software. DNA of the polytene X chromosome from ovarian nurse cells was obtained by microdissection and was used as a template for amplification with degenerate oligo primers. A fluorescently labeled X chromosome painting probe was hybridized with formaldehyde-fixed ovaries of mosquitoes using a 3D-FISH method. The nucleolus was stained by immunostaining with an anti-fibrillarin antibody. The analysis was conducted with TANGO—a software for a chromosome spatial organization analysis. We show that the volume and position of the X chromosome have tissue-specific characteristics. Unlike nurse cell nuclei, the growth of follicular epithelium nuclei is not accompanied with the proportional growth of the X chromosome. However, the shape of the X chromosome does not differ between the tissues. The dynamics of the X chromosome attachment regions location is tissue-specific and it is correlated with the process of nucleus growth in follicular epithelium and nurse cells.</p></div
    corecore