9 research outputs found

    The Impact of Glucose-Based or Lipid-Based Total Parenteral Nutrition on the Free Fatty Acids Profile in Critically Ill Patients

    No full text
    Introduction: Our study aim was to assess how the macronutrient intake during total parenteral nutrition (TPN) modulates plasma total free fatty acids (FFAs) levels and individual fatty acids in critically ill patients. Method: Adult patients aged 18–80, admitted to the intensive care unit (ICU), who were indicated for TPN, with an expected duration of more than three days, were included in the study. Isoenergetic and isonitrogenous TPN solutions were given with a major non-protein energy source, which was glucose (group G) or glucose and lipid emulsions (Smof lipid; group L). Blood samples were collected on days 0, 1, 3, 6, 9, 14, and 28. Results: A significant decrease (p < 0.001) in total FFAs occurred in both groups with a bigger decrease in group G (p < 0.001) from day 0 (0.41 ± 0.19 mmol∙L−1) to day 28 (0.10 ± 0.07 mmol∙L−1). Increased palmitooleic acid and decreased linoleic and docosahexaenoic acids, with a trend of increased mead acid to arachidonic acid ratio, on day 28 were observed in group G in comparison with group L. Group G had an insignificant increase in leptin with no differences in the concentrations of vitamin E, triacylglycerides, and plasminogen activator inhibitor-1. Conclusion: Decreased plasma FFA in critically ill patients who receive TPN may result from increased insulin sensitivity with a better effect in group G, owing to higher insulin and glucose dosing and no lipid emulsions. It is advisable to include a lipid emulsion at the latest from three weeks of TPN to prevent essential fatty acid deficiency

    Neutron-hole states in 45Ar from 1H(46Ar, d) 45Ar reactions

    No full text
    To improve the effective interactions in the pf shell, it is important to measure the single-particle and single-hole states near the N = 28 shell gap. In this paper, the neutron spectroscopic factors of hole states from the unstable neutron-rich 45Ar (Z = 18,N = 27) nucleus have been studied using the 1H(46Ar,d) 45Ar transfer reaction in inverse kinematics. Comparison of our results with the particle states of 45Ar produced in 2H(44Ar, p) 45Ar reaction shows that the two reactions populate states with different angular momenta. Using the angular distributions, we are able to confirm the spin assignments of four low-lying states of 45Ar. These are the ground state (f7/2), the first-excited state (p3/2), and the s1/2 and d3/2 states. While large basis shell-model predictions describe spectroscopic properties of the ground and p3/2 states very well, they fail to describe the s1/2 and d3/2 hole states. © 2013 American Physical Society.link_to_subscribed_fulltex

    Mechanisms in knockout reactions

    No full text
    We report the first detailed study of the relative importance of the stripping and diffraction mechanisms involved in nucleon knockout reactions, by the use of a coincidence measurement of the residue and fast proton following one-proton knockout reactions. The measurements used the S800 spectrograph in combination with the HiRA detector array at the NSCL. Results for the reactions Be9(C9,B8+X)Y and Be9(B8,Be7+X)Y are presented and compared with theoretical predictions for the two reaction mechanisms calculated using the eikonal model. The data show a clear distinction between the stripping and diffraction mechanisms and the measured relative proportions are very well reproduced by the reaction theory. This agreement adds support to the results of knockout reaction analyses and their applications to the spectroscopy of rare isotopes. © 2009 The American Physical Society.link_to_subscribed_fulltex

    Neutron spectroscopic factors of Ar34 and Ar46 from (p,d) transfer reactions

    No full text
    Single-neutron-transfer measurements using (p,d) reactions have been performed at 33 MeV per nucleon with proton-rich Ar34 and neutron-rich Ar46 beams in inverse kinematics. The extracted spectroscopic factors are compared to the large-basis shell-model calculations. Relatively weak quenching of the spectroscopic factors is observed between Ar34 and Ar46. The experimental results suggest that neutron correlations have a weak dependence on the asymmetry of the nucleus over this isotopic region. The present results are consistent with the systematics established from extensive studies of spectroscopic factors and dispersive optical-model analyses of Ca40-49 isotopes. They are, however, inconsistent with the trends obtained in knockout-reaction measurements. © 2011 The American Physical Society.link_to_subscribed_fulltex

    Isospin effects in 40,48Ca+40,48Ca collisions

    No full text
    The isospin dependence of two proton correlations is studied in 40Ca+40Ca and 48Ca+48Ca collisions at E / A = 80 MeV. Measurements were performed with the HiRA detector array complemented by the 4π Ball at NSCL. We observe a strong isospin dependence of the pp-correlation functions; however the emitting source radius extracted using the imaging technique yields no sensitivity to the isospin of the reaction system. We interpret this result as a consequence of smaller fraction of fast proton emission in the neutron rich 48Ca system. © 2010 Elsevier B.V. All rights reserved.link_to_subscribed_fulltex
    corecore