56 research outputs found

    Development of 18F-labeled agonist radioligands for PET imaging of the high-affinity state of cerebral dopamine D2/3 receptors

    Get PDF
    Positronemissietomografie (PET) is een krachtige techniek voor medische beeldvorming. Met behulp van radioactief gemerkte verbindingen bekend als tracers maakt PET het mogelijk om fysiologische processen in het levende lichaam te visualiseren en kwantitatief te omschrijven. Dopamine is een belangrijke neurotransmitter - een verbinding gebruikt door hersenneuronen om met elkaar te communiceren. Dergelijke communicatie (signalering) vindt plaats wanneer dopamine uit Ă©Ă©n neuron vrijkomt en aan de receptoren op een andere neuron bindt. Er wordt verondersteld dat het aantal en de functie van dopaminereceptoren in veel neuropsychiatrische stoornissen zoals de ziekte van Parkinson, schizofrenie en verslaving, anders is dan in de gezonde staat. Daarom kan de beeldvorming van dopaminereceptoren door PET gebruikt worden om neuropsychiatrische aandoeningen te diagnosticeren en / of erachter te komen hoe ze zich ontwikkelen. Dopaminereceptoren die behoren tot de tweede en derde (D2/3) subtypes zijn het vaakst afgebeeld door PET. Receptoren van elk subtype kunnen in twee omkeerbare toestanden bestaan, met hoge en lage affiniteit voor dopamine. Volgens Ă©Ă©n hypothese is de hoge affiniteitstoestand de "functionele" deelverzameling van alle receptoren, die voornamelijk verantwoordelijk is voor de signalering. In dit geval zou de beeldvorming van alleen de hoge affiniteitstoestand meer waardevolle informatie over de toestand van de hersenen moeten opleveren dan de beeldvorming van beide affiniteitsstaten tegelijk. De meeste bestaande PET-tracers voor dopaminereceptoren kunnen echter tussen de affiniteitstoestanden niet onderscheiden. In dit onderzoeksproject hadden we als doel om nieuwe PET-tracers te ontwikkelen die de hoge affiniteitstoestand van D2/3 dopaminereceptoren zouden herkennen en geschikt zouden zijn voor wijdverspreid klinisch gebruik

    The Chemogenetic Receptor Ligand Clozapine N-Oxide Induces<em> in vivo</em> Neuroreceptor Occupancy and Reduces Striatal Glutamate Levels

    Get PDF
    Chemogenetic studies with the ligand clozapine N-oxide (CNO) are predicated upon the assumption that CNO is devoid of actions at natural neuroreceptors. However, recent evidence shows that CNO may be converted back to clozapine (CLZ) in vivo, which could yield plasma concentrations that may be sufficient to occupy inter alia dopamine D2=3 and serotonin 5HT2A receptors in living brain. To test this phenomenon, we measured striatal dopamine D2=3 receptor occupancy with [18F]fallypride PET and serotonin 5HT2A occupancy ex vivo using [18F]MH.MZ. We found a CNO dosedependent effect on the availability of both neuroreceptor sites. In parallel MR spectroscopy experiments, we found that CNO reduced creatine C phosphcreatine (CrCPCr) and increased N-acetylaspartate C N-acetylaspartylglutamate (NAACNAAG) signals in the prefrontal cortex, and also reduced the glutamate signal in dorsal striatum, with peak effect at 2 mg/kg. Thus, our findings suggest that conversion of CNO to CLZ in living rats imparts significant occupancy at endogenous neuroreceptors and significant changes to neurometabolite levels

    Synthesis and evaluation in rats of homologous series of [F-18]-labeled dopamine D-2/3 receptor agonists based on the 2-aminomethylchroman scaffold as potential PET tracers

    Get PDF
    Background: Agonist positron emission tomography (PET) tracers for dopamine D-2/3 receptors (D(2/3)Rs) offer greater sensitivity to changes in endogenous dopamine levels than D2/3R antagonist tracers. D2/3R agonist tracers currently available for clinical research are labeled with the short-lived isotope carbon-11, which limits their use. We aimed to develop high-affinity D2R agonists amenable for labeling with the longer-living fluorine-18. Here, we report the evaluation as potential PET tracers of two homologous series of [F-18]fluorinated tracers based on the 2-aminomethylchroman-7-ol (AMC) scaffold: (R)-2-((4-(2-fluoroalkoxy)benzylamino)methyl)chroman-7-ols (AMC13 homologues) and (R)-2-((2-(4-(4-(fluoroalkoxy)phenyl)piperazin-1-yl)ethylamino)methyl)chroman-7-ols (AMC15 homologues). We varied the length of the F-18-fluoroalkyl chain in these structures to balance brain penetration and non-specific binding of the radioligands by adjusting their lipophilicity. Methods: The tracers were evaluated in brain slices of Sprague-Dawley rats by in vitro autoradiography and in living rats by microPET imaging and ex vivo autoradiography. PET data were analyzed with one- and two-tissue compartmental models (1TCM/2TCM), simplified reference tissue model (SRTM), and Logan graphical analysis. Specificity of binding was tested by blocking D2/3R with raclopride. Results: Homologues with a shorter fluoroalkyl chain consistently showed greater D2/3R-specific-to-total binding ratios in the striatum than those with longer chains. The fluoroethoxy homologue of AMC13 ([F-18]FEt-AMC13) demonstrated the highest degree of D2/3R-specific binding among the evaluated tracers: mean striatum-to-cerebellum uptake ratio reached 4.4 in vitro and 2.1/2.8 in vivo/ex vivo (PET/autoradiography). Striatal binding potential (BPND) relative to cerebellum was 0.51-0.63 depending on the estimation method. Radiometabolites of [F-18]FEt-AMC13 did not enter the brain. In vitro, application of 10 mu mol/L raclopride reduced D2/3R-specific binding of [F-18]FEt-AMC13 in the striatum by 81 %. In vivo, pre-treatment with 1 mg/kg (2.9 mu mol/kg) raclopride led to 17-39 % decrease in D2/3R-specific binding in the striatum. Conclusions: Varying the length of the [F-18]fluoroalkyl chain helped improve the characteristics of the original candidate tracers. Further modifications of the current lead [F-18]FEt-AMC13 can provide an agonist radiopharmaceutical suitable for D2/3R imaging by PET

    A pilot study of cerebral metabolism and serotonin 5-HT2A receptor occupancy in rats treated with the psychedelic tryptamine DMT in conjunction with the MAO inhibitor harmine

    Get PDF
    Rationale: The psychedelic effects of the traditional Amazonian botanical decoction known as ayahuasca are often attributed to agonism at brain serotonin 5-HT2A receptors by N,N-dimethyltryptamine (DMT). To reduce first pass metabolism of oral DMT, ayahuasca preparations additionally contain reversible monoamine oxidase A (MAO-A) inhibitors, namely β-carboline alkaloids such as harmine. However, there is lacking biochemical evidence to substantiate this pharmacokinetic potentiation of DMT in brain via systemic MAO-A inhibition.Objectives: We measured the pharmacokinetic profile of harmine and/or DMT in rat brain, and tested for pharmacodynamic effects on brain glucose metabolism and DMT occupancy at brain serotonin 5-HT2A receptors.Methods: We first measured brain concentrations of harmine and DMT after treatment with harmine and/or DMT at low sub-cutaneous doses (1 mg/kg each) or harmine plus DMT at moderate doses (3 mg/kg each). In the same groups of rats, we also measured ex vivo the effects of these treatments on the availability of serotonin 5-HT2A receptors in frontal cortex. Finally, we explored effects of DMT and/or harmine (1 mg/kg each) on brain glucose metabolism with [18F]FDG-PET.Results: Results confirmed that co-administration of harmine inhibited the formation of the DMT metabolite indole-3-acetic acid (3-IAA) in brain, while correspondingly increasing the cerebral availability of DMT. However, we were unable to detect any significant occupancy by DMT at 5-HT2A receptors measured ex vivo, despite brain DMT concentrations as high as 11.3 µM. We did not observe significant effects of low dose DMT and/or harmine on cerebral [18F]FDG-PET uptake.Conclusion: These preliminary results call for further experiments to establish the dose-dependent effects of harmine/DMT on serotonin receptor occupancy and cerebral metabolism

    The Chemogenetic Receptor Ligand Clozapine N-Oxide Induces in vivo Neuroreceptor Occupancy and Reduces Striatal Glutamate Levels

    Get PDF
    Chemogenetic studies with the ligand clozapine N-oxide (CNO) are predicated upon the assumption that CNO is devoid of actions at natural neuroreceptors. However, recent evidence shows that CNO may be converted back to clozapine (CLZ) in vivo, which could yield plasma concentrations that may be sufficient to occupy inter alia dopamine D2/3 and serotonin 5HT2A receptors in living brain. To test this phenomenon, we measured striatal dopamine D2/3 receptor occupancy with [18F]fallypride PET and serotonin 5HT2A occupancy ex vivo using [18F]MH.MZ. We found a CNO dose-dependent effect on the availability of both neuroreceptor sites. In parallel MR spectroscopy experiments, we found that CNO reduced creatine + phosphcreatine (Cr+PCr) and increased N-acetylaspartate + N-acetylaspartylglutamate (NAA+NAAG) signals in the prefrontal cortex, and also reduced the glutamate signal in dorsal striatum, with peak effect at 2 mg/kg. Thus, our findings suggest that conversion of CNO to CLZ in living rats imparts significant occupancy at endogenous neuroreceptors and significant changes to neurometabolite levels
    • …
    corecore