54 research outputs found

    Comparison of experimental results from three dual fluidized bed test facilities capturing CO2 with CaO

    Get PDF
    10th International Conference on Greenhouse Gas Control Technologies[EN] Postcombustion CO2 capture technologies using CaO as a regenerable solid sorbent have emerged as a promising route to reduce the electricity penalty and the cost of CO2 capture from flue gases of both new and existing fossil fuelled power plants. Rapid progress is taking place in the understanding of these processes at different levels. However, experimental information, validating the concept under continuous operating conditions similar to those expected for large-scale application, remain scarce. We present here a comparative analysis of the results obtained in three laboratory-scale dual fluidized bed (DFB) test facilities in Spain, Germany and Canada. The test facilities range from 10 to 75 kWth with riser heights between 4.5 and 12.4 m. They have been operated to capture CO2 with CaO from simulated flue gases in the bubbling, turbulent and fast fluidization fluid-dynamic regimes. The carbonator reactors are interconnected with regenerators, where the CaCO3 decomposition has been conducted continuously and semi-continuously, operated in both air-combustion and oxy-combustion modes. Many stationary and non-stationary states have been achieved at different combinations of the key operating parameters (e.g. calcium looping ratio). All DFB test facilities showed a carbon balance closure of high quality in most tests. The trends of CO2 capture efficiency with respect to operating conditions and sorbent characteristics are compared and a discussion is made on the most appropriate methodology to conduct future tests under a joint new FP7 project (CaOling) that aims at the rapid scaling up of the calcium looping technology.This work is being funded by the European Commision 7th Framework Programme under the CaOling Project.Peer reviewe

    Contribution of Autosomal Loci and the Y Chromosome to the Stress Response in Rats

    Get PDF
    Stress is a critical contributor to cardiovascular diseases through its impact on blood pressure variability and cardiac function. Familial clustering of reactivity to stress has been demonstrated in human subjects, and some rodent models of hypertension are hyperresponsive to stress. Therefore, the present study was designed to uncover the genetic determinants of the stress response. We performed a total genome linkage search to identify the loci of the body temperature response to immobilization stress in a set of recombinant inbred strains (RIS) originating from reciprocal crosses of spontaneously hypertensive rats (SHR) with a normotensive Brown Norway Lx strain. Two quantitative trait loci (QTLs) were revealed on chromosomes (Chrs) 10 and 12 (logarithm of odds scores, 2.2 and 1.3, respectively). The effects of these QTLs were enhanced by a high sodium diet (logarithm of odds scores, 4.0 and 3.3 for Chrs 10 and 12, respectively), which is suggestive of a salt-sensitive component for the phenotype, Congenics for Chr 10 confirmed both the QTL and the salt effect in RIS. Negatively associated loci were also identified on Chrs 8 and 11. Interaction between the loci of Chrs 10 and 12 was demonstrated, with the rat strains bearing SHR alleles at both loci having the highest thermal response to stress. Furthermore, the Y Chr of SHR origin enhanced the response to immobilization stress, as demonstrated in 2 independent models, RIS and Y Chr consomics. However, its full effect requires autosomes of the SHR strain. These findings provide the first evidence for the genetic determination of reactivity to stress with interactions between autosomal loci and between the Y and autosomal Chrs that contribute to the explanation of the 46% of variance in the stress response

    Анализ программных продуктов, осуществляющих ведение противопожарных мероприятий на основе производственных, финансовых и безопасностных факторов

    Get PDF
    Данная статья посвящена изучению противопожарных мероприятий на основе производственных, финансовых и безопасностных факторов, анализу программных продуктов по пожарной безопасности. Разработка и проведение противопожарных мероприятий необходимы для анализа и устранения вероятных причин возгораний. За счет них обеспечивается максимальное ограничение распространения пламени в случае чрезвычайных ситуаций

    Heritability and Tissue Specificity of Expression Quantitative Trait Loci

    Get PDF
    Variation in gene expression is heritable and has been mapped to the genome in humans and model organisms as expression quantitative trait loci (eQTLs). We applied integrated genome-wide expression profiling and linkage analysis to the regulation of gene expression in fat, kidney, adrenal, and heart tissues using the BXH/HXB panel of rat recombinant inbred strains. Here, we report the influence of heritability and allelic effect of the quantitative trait locus on detection of cis- and trans-acting eQTLs and discuss how these factors operate in a tissue-specific context. We identified several hundred major eQTLs in each tissue and found that cis-acting eQTLs are highly heritable and easier to detect than trans-eQTLs. The proportion of heritable expression traits was similar in all tissues; however, heritability alone was not a reliable predictor of whether an eQTL will be detected. We empirically show how the use of heritability as a filter reduces the ability to discover trans-eQTLs, particularly for eQTLs with small effects. Only 3% of cis- and trans-eQTLs exhibited large allelic effects, explaining more than 40% of the phenotypic variance, suggestive of a highly polygenic control of gene expression. Power calculations indicated that, across tissues, minor differences in genetic effects are expected to have a significant impact on detection of trans-eQTLs. Trans-eQTLs generally show smaller effects than cis-eQTLs and have a higher false discovery rate, particularly in more heterogeneous tissues, suggesting that small biological variability, likely relating to tissue composition, may influence detection of trans-eQTLs in this system. We delineate the effects of genetic architecture on variation in gene expression and show the sensitivity of this experimental design to tissue sampling variability in large-scale eQTL studies

    Nitrile biotransformationby aspergillus niger

    Get PDF
    A nitrile-converting enzyme activity was induced in Aspergillus niger K10 by 3-cyanopyridine. The whole cell biocatalyst was active at pH 3–11 and hydrolyzed the cyano group into acid and/or amide functions in benzonitrile as well as in its meta- and para-substituted derivatives, cyanopyridines, 2-phenylacetonitrile and thiophen-2-acetonitrile. Amides constituted a significant part of the total biotransformation products of 2- and 4-cyanopyridine, 4-chlorobenzonitrile, 4-tolunitrile and 1,4-dicyanobenzene, while α-substituted acrylonitriles gave amides as the sole product

    Biotransformation of nitriles to amides using soluble and immobilized nitrile hydratase from Rhodococcus erythropolis A4

    Get PDF
    A semi-purified nitrile hydratase from Rhodococcus erythropolis A4 was applied to biotransformations of 3-oxonitriles 1a–4a, 3-hydroxy-2-methylenenitriles 5a–7a, 4-hydroxy-2-methylenenitriles 8a–9a, 3-hydroxynitriles 10a–12a and 3-acyloxynitrile 13a into amides 1b–13b. Cross-linked enzyme aggregates (CLEAs) with nitrile hydratase and amidase activities (88% and 77% of the initial activities, respectively) were prepared from cell-free extract of this microorganism and used for nitrile hydration in presence of ammonium sulfate, which selectively inhibited amidase activity. The genes nha1 and nha2 coding for α and β subunits of nitrile hydratase were cloned and sequenced

    Dissection of chromosome 18 blood pressure and salt-sensitivity quantitative trait loci in the spontaneously hypertensive rat

    Get PDF
    Hypertension in humans and experimental models has a strong hereditary basis, but identification of causative genes remains challenging. Quantitative trait loci (QTLs) for hypertension and salt sensitivity have been reported on rat chromosome 18. We set out to genetically isolate and prioritise genes within the salt sensitivity and hypertension QTLs on the spontaneously hypertensive rat (SHR) chromosome 18, by developing and characterising a series of congenic strains derived from the SHR and normotensive Brown Norway (BN) rat strains. The SHR.BN-D18Rat113/D18Rat82 (SHR-18) congenic strain exhibits significantly lower blood pressure and is salt-resistant compared to SHR. Transplantation of kidneys from SHR-18 donors into SHR recipients is sufficient to attenuate increased blood pressure but not salt sensitivity. Derivation of congenic sublines allowed separation of salt sensitivity from hypertension QTL regions. Renal expression studies with microarray and Solexa-based sequencing in parental and congenic strains identified four differentially expressed genes within the hypertension QTL region, one of which is an unannotated transcript encoding a previously undescribed, small non-coding RNA. Sequencing selected biological candidate genes within the minimal congenic interval revealed a non-synonymous variant in SHR Transcription factor 4. The minimal congenic interval is syntenic to a region of human chromosome 18 where significant linkage to hypertension was observed in family-based linkage studies. These congenic lines provide reagents for identifying causative genes that underlie the chromosome 18 SHR QTLs for hypertension and salt sensitivity. Candidate genes identified in these studies merit further investigation as potentially causative hypertension genes in SHR and human hypertension
    corecore