25 research outputs found

    A Real-Time 3D Rendering System with BRDF Materials

    No full text
    We present a system for real-time realistic rendering of 3D scenes. Most of available on the market 3d visualization systems lack physical correctness of rendering, especially concerning complex materials and light sources. Our system is aimed to provide the physically correct visualization to the extent possible by modern graphics hardware. It supports natural sunlight illumination, complex BRDF materials, real-time specular reflections, integrated computation of illumination maps and lighting textures, tone mapping control. Areas of application are automotive and architectural design

    Image Synthesis Pipeline for CNN-Based Sensing Systems

    No full text
    The rapid development of machine learning technologies in recent years has led to the emergence of CNN-based sensors or ML-enabled smart sensor systems, which are intensively used in medical analytics, unmanned driving of cars, Earth sensing, etc. In practice, the accuracy of CNN-based sensors is highly dependent on the quality of the training datasets. The preparation of such datasets faces two fundamental challenges: data quantity and data quality. In this paper, we propose an approach aimed to solve both of these problems and investigate its efficiency. Our solution improves training datasets and validates it in several different applications: object classification and detection, depth buffer reconstruction, panoptic segmentation. We present a pipeline for image dataset augmentation by synthesis with computer graphics and generative neural networks approaches. Our solution is well-controlled and allows us to generate datasets in a reproducible manner with the desired distribution of features which is essential to conduct specific experiments in computer vision. We developed a content creation pipeline targeted to create realistic image sequences with highly variable content. Our technique allows rendering of a single 3D object or 3D scene in a variety of ways, including changing of geometry, materials and lighting. By using synthetic data in training, we have improved the accuracy of CNN-based sensors compared to using only real-life data

    Investigation of PZT Materials for Reliable Piezostack Deformable Mirror with Modular Design

    No full text
    This article presents a study of the electrophysical properties of a piezoceramic material for use in adaptive optics. The key characteristics that may be important for the manufacturing of piezoelectric deformable mirrors are the following: piezoelectric constants (d31, d33, d15), capacitance, elastic compliance values s for different crystal directions, and the dielectric loss tangent (tgδ). Based on PZT ceramics, the PKP-12 material was developed with high values of the dielectric constant, piezoelectric modulus, and electromechanical coupling coefficients. The deformable mirror control elements are made from the resulting material—piezoceramic combs with five individual actuators in a row. In this case, the stroke of the actuator is in the range of 4.1–4.3 microns and the capacitance of the actuator is about 12 nF
    corecore